/- Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Early library ported from Coq HoTT, but greatly extended since. The basic definitions are in init.pointed See also .pointed2 -/ import .nat.basic ..arity ..prop_trunc open is_trunc eq prod sigma nat equiv option is_equiv bool unit sigma.ops sum algebra function namespace pointed variables {A B : Type} definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) := pointed.mk idp definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := pointed.mk (f pt) definition loop [reducible] [constructor] (A : Type*) : Type* := pointed.mk' (point A = point A) definition loopn [reducible] : ℕ → Type* → Type* | loopn 0 X := X | loopn (n+1) X := loop (loopn n X) notation `Ω` := loop notation `Ω[`:95 n:0 `]`:0 := loopn n namespace ops -- this is in a separate namespace because it caused type class inference to loop in some places definition is_trunc_pointed_MK [instance] [priority 1100] (n : ℕ₋₂) {A : Type} (a : A) [H : is_trunc n A] : is_trunc n (pointed.MK A a) := H end ops definition is_trunc_loop [instance] [priority 1100] (A : Type*) (n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) := !is_trunc_eq definition loopn_zero_eq [unfold_full] (A : Type*) : Ω[0] A = A := rfl definition loopn_succ_eq [unfold_full] (k : ℕ) (A : Type*) : Ω[succ k] A = Ω (Ω[k] A) := rfl definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt definition refln_eq_refl [unfold_full] (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl definition loopn_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type := Ω[n] (pointed.mk' A) definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A := begin cases k with k, exact mul, exact concat end definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B := begin cases A with A a, cases B with B b, esimp at *, fapply apdt011 @pType.mk, { apply ua f}, { rewrite [cast_ua, p]}, end definition pType_eq_elim {A B : Type*} (p : A = B :> Type*) : Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B := by induction p; exact ⟨idp, idpo⟩ protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X := begin fapply equiv.MK, { intro x, induction x with X x, exact ⟨X, x⟩}, { intro x, induction x with X x, exact pointed.MK X x}, { intro x, induction x with X x, reflexivity}, { intro x, induction x with X x, reflexivity}, end definition pType.eta_expand [constructor] (A : Type*) : Type* := pointed.MK A pt definition add_point [constructor] (A : Type) : Type* := pointed.Mk (none : option A) postfix `₊`:(max+1) := add_point -- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A") end pointed namespace pointed /- truncated pointed types -/ definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type) (q : Point A =[p] Point B) : A = B := begin induction A with A HA a, induction B with B HB b, esimp at *, induction q, esimp, refine ap010 (ptrunctype.mk A) _ a, exact !is_prop.elim end definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*) : A = B := begin cases pType_eq_elim p with q r, exact ptrunctype_eq q r end definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A := trunctype.struct A end pointed open pointed namespace pointed variables {A B C D : Type*} {f g h : A →* B} {P : A → Type} {p₀ : P pt} {k k' l m : ppi P p₀} /- categorical properties of pointed maps -/ definition pid [constructor] [refl] (A : Type*) : A →* A := pmap.mk id idp definition pcompose [constructor] [trans] {A B C : Type*} (g : B →* C) (f : A →* B) : A →* C := pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g) infixr ` ∘* `:60 := pcompose definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) : pointed.MK A a →* pointed.MK B (f a) := pmap.mk f idp definition respect_pt_pcompose {A B C : Type*} (g : B →* C) (f : A →* B) : respect_pt (g ∘* f) = ap g (respect_pt f) ⬝ respect_pt g := idp definition passoc [constructor] (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) := phomotopy.mk (λa, idp) abstract !idp_con ⬝ whisker_right _ (!ap_con ⬝ whisker_right _ !ap_compose'⁻¹) ⬝ !con.assoc end definition pid_pcompose [constructor] (f : A →* B) : pid B ∘* f ~* f := begin fapply phomotopy.mk, { intro a, reflexivity}, { reflexivity} end definition pcompose_pid [constructor] (f : A →* B) : f ∘* pid A ~* f := begin fapply phomotopy.mk, { intro a, reflexivity}, { reflexivity} end /- equivalences and equalities -/ protected definition ppi.sigma_char [constructor] {A : Type*} (B : A → Type) (b₀ : B pt) : ppi B b₀ ≃ Σ(k : Πa, B a), k pt = b₀ := begin fapply equiv.MK: intro x, { constructor, exact respect_pt x }, { induction x, constructor, assumption }, { induction x, reflexivity }, { induction x, reflexivity } end definition pmap.sigma_char [constructor] {A B : Type*} : (A →* B) ≃ Σ(f : A → B), f pt = pt := !ppi.sigma_char definition pmap.eta_expand [constructor] {A B : Type*} (f : A →* B) : A →* B := pmap.mk f (respect_pt f) definition pmap_equiv_right (A : Type*) (B : Type) : (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) := begin fapply equiv.MK, { intro u a, exact pmap.to_fun u.2 a}, { intro f, refine ⟨f pt, _⟩, fapply pmap.mk, intro a, esimp, exact f a, reflexivity}, { intro f, reflexivity}, { intro u, cases u with b f, cases f with f p, esimp at *, induction p, reflexivity} end /- some specific pointed maps -/ -- The constant pointed map between any two types definition pconst [constructor] (A B : Type*) : A →* B := !ppi_const -- the pointed type of pointed maps -- TODO: remove definition ppmap [constructor] (A B : Type*) : Type* := @pppi A (λa, B) definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B := pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity) definition pinverse [constructor] {X : Type*} : Ω X →* Ω X := pmap.mk eq.inverse idp /- we generalize the definition of ap1 to arbitrary paths, so that we can prove properties about it using path induction (see for example ap1_gen_con and ap1_gen_con_natural) -/ definition ap1_gen [reducible] [unfold 6 9 10] {A B : Type} (f : A → B) {a a' : A} {b b' : B} (q : f a = b) (q' : f a' = b') (p : a = a') : b = b' := q⁻¹ ⬝ ap f p ⬝ q' definition ap1_gen_idp [unfold 6] {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) : ap1_gen f q q idp = idp := con.left_inv q definition ap1_gen_idp_left [unfold 6] {A B : Type} (f : A → B) {a a' : A} (p : a = a') : ap1_gen f idp idp p = ap f p := proof idp_con (ap f p) qed definition ap1_gen_idp_left_con {A B : Type} (f : A → B) {a : A} (p : a = a) (q : ap f p = idp) : ap1_gen_idp_left f p ⬝ q = proof ap (concat idp) q qed := proof idp_con_idp q qed definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := pmap.mk (λp, ap1_gen f (respect_pt f) (respect_pt f) p) (ap1_gen_idp f (respect_pt f)) definition apn (n : ℕ) (f : A →* B) : Ω[n] A →* Ω[n] B := begin induction n with n IH, { exact f}, { esimp [loopn], exact ap1 IH} end notation `Ω→`:(max+5) := ap1 notation `Ω→[`:95 n:0 `]`:0 := apn n definition ptransport [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') : B a →* B a' := pmap.mk (transport B p) (apdt (λa, Point (B a)) p) definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK A a →* pointed.MK A a' := pmap.mk id p definition pbool_pmap [constructor] {A : Type*} (a : A) : pbool →* A := pmap.mk (bool.rec pt a) idp /- properties of pointed maps -/ definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp definition apn_succ [unfold_full] (n : ℕ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp definition ap1_gen_con {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) (p₁ : a₁ = a₂) (p₂ : a₂ = a₃) : ap1_gen f q₁ q₃ (p₁ ⬝ p₂) = ap1_gen f q₁ q₂ p₁ ⬝ ap1_gen f q₂ q₃ p₂ := begin induction p₂, induction q₃, induction q₂, reflexivity end definition ap1_gen_inv {A B : Type} (f : A → B) {a₁ a₂ : A} {b₁ b₂ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (p₁ : a₁ = a₂) : ap1_gen f q₂ q₁ p₁⁻¹ = (ap1_gen f q₁ q₂ p₁)⁻¹ := begin induction p₁, induction q₁, induction q₂, reflexivity end definition ap1_con {A B : Type*} (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q := ap1_gen_con f (respect_pt f) (respect_pt f) (respect_pt f) p q theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ := ap1_gen_inv f (respect_pt f) (respect_pt f) p -- the following two facts are used for the suspension axiom to define spectrum cohomology definition ap1_gen_con_natural {A B : Type} (f : A → B) {a₁ a₂ a₃ : A} {p₁ p₁' : a₁ = a₂} {p₂ p₂' : a₂ = a₃} {b₁ b₂ b₃ : B} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (q₃ : f a₃ = b₃) (r₁ : p₁ = p₁') (r₂ : p₂ = p₂') : square (ap1_gen_con f q₁ q₂ q₃ p₁ p₂) (ap1_gen_con f q₁ q₂ q₃ p₁' p₂') (ap (ap1_gen f q₁ q₃) (r₁ ◾ r₂)) (ap (ap1_gen f q₁ q₂) r₁ ◾ ap (ap1_gen f q₂ q₃) r₂) := begin induction r₁, induction r₂, exact vrfl end definition ap1_gen_con_idp {A B : Type} (f : A → B) {a : A} {b : B} (q : f a = b) : ap1_gen_con f q q q idp idp ⬝ con.left_inv q ◾ con.left_inv q = con.left_inv q := by induction q; reflexivity definition apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A) : apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q := ap1_con (apn n f) p q definition apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ := ap1_inv (apn n f) p definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) := begin induction B with B b, induction f with f pf, esimp at *, cases pf, esimp, apply is_equiv.homotopy_closed (ap f), intro p, exact !idp_con⁻¹ end definition is_equiv_apn (n : ℕ) (f : A →* B) [H : is_equiv f] : is_equiv (apn n f) := begin induction n with n IH, { exact H}, { exact is_equiv_ap1 (apn n f)} end definition pinverse_con [constructor] {X : Type*} (p q : Ω X) : pinverse (p ⬝ q) = pinverse q ⬝ pinverse p := !con_inv definition pinverse_inv [constructor] {X : Type*} (p : Ω X) : pinverse p⁻¹ = (pinverse p)⁻¹ := idp definition ap1_pcompose_pinverse [constructor] {X Y : Type*} (f : X →* Y) : Ω→ f ∘* pinverse ~* pinverse ∘* Ω→ f := phomotopy.mk (ap1_gen_inv f (respect_pt f) (respect_pt f)) abstract begin induction Y with Y y₀, induction f with f f₀, esimp at * ⊢, induction f₀, reflexivity end end definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) := !is_equiv_cast /- categorical properties of pointed homotopies -/ variable (k) protected definition phomotopy.refl [constructor] : k ~* k := phomotopy.mk homotopy.rfl !idp_con variable {k} protected definition phomotopy.rfl [reducible] [constructor] [refl] : k ~* k := phomotopy.refl k protected definition phomotopy.symm [constructor] [symm] (p : k ~* l) : l ~* k := phomotopy.mk p⁻¹ʰᵗʸ (inv_con_eq_of_eq_con (to_homotopy_pt p)⁻¹) protected definition phomotopy.trans [constructor] [trans] (p : k ~* l) (q : l ~* m) : k ~* m := phomotopy.mk (λa, p a ⬝ q a) (!con.assoc ⬝ whisker_left (p pt) (to_homotopy_pt q) ⬝ to_homotopy_pt p) infix ` ⬝* `:75 := phomotopy.trans postfix `⁻¹*`:(max+1) := phomotopy.symm /- equalities and equivalences relating pointed homotopies -/ definition phomotopy.rec' [recursor] (B : k ~* l → Type) (H : Π(h : k ~ l) (p : h pt ⬝ respect_pt l = respect_pt k), B (phomotopy.mk h p)) (h : k ~* l) : B h := begin induction h with h p, refine transport (λp, B (ppi.mk h p)) _ (H h (con_eq_of_eq_con_inv p)), apply to_left_inv !eq_con_inv_equiv_con_eq p end definition phomotopy.eta_expand [constructor] (p : k ~* l) : k ~* l := phomotopy.mk p (to_homotopy_pt p) definition is_trunc_ppi [instance] (n : ℕ₋₂) {A : Type*} (B : A → Type) (b₀ : B pt) [Πa, is_trunc n (B a)] : is_trunc n (ppi B b₀) := is_trunc_equiv_closed_rev _ !ppi.sigma_char definition is_trunc_pmap [instance] (n : ℕ₋₂) (A B : Type*) [is_trunc n B] : is_trunc n (A →* B) := !is_trunc_ppi definition is_trunc_ppmap [instance] (n : ℕ₋₂) {A B : Type*} [is_trunc n B] : is_trunc n (ppmap A B) := !is_trunc_pmap definition phomotopy_of_eq [constructor] (p : k = l) : k ~* l := phomotopy.mk (ap010 ppi.to_fun p) begin induction p, refine !idp_con end definition phomotopy_of_eq_idp (k : ppi P p₀) : phomotopy_of_eq idp = phomotopy.refl k := idp definition pconcat_eq [constructor] (p : k ~* l) (q : l = m) : k ~* m := p ⬝* phomotopy_of_eq q definition eq_pconcat [constructor] (p : k = l) (q : l ~* m) : k ~* m := phomotopy_of_eq p ⬝* q infix ` ⬝*p `:75 := pconcat_eq infix ` ⬝p* `:75 := eq_pconcat definition pr1_phomotopy_eq {p q : k ~* l} (r : p = q) (a : A) : p a = q a := ap010 to_homotopy r a definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g := phomotopy.mk (λa, ap h (p a)) abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con⁻¹ ⬝ ap02 _ (to_homotopy_pt p)) end definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h := phomotopy.mk (λa, p (h a)) abstract !con.assoc⁻¹ ⬝ whisker_right _ (!ap_con_eq_con_ap)⁻¹ ⬝ !con.assoc ⬝ whisker_left _ (to_homotopy_pt p) end definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B} (q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g := pwhisker_left _ p ⬝* pwhisker_right _ q variables (k l) definition phomotopy.sigma_char [constructor] : (k ~* l) ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k := begin fapply equiv.MK : intros h, { exact ⟨h , to_homotopy_pt h⟩ }, { cases h with h p, exact phomotopy.mk h p }, { cases h with h p, exact ap (dpair h) (to_right_inv !eq_con_inv_equiv_con_eq p) }, { induction h using phomotopy.rec' with h p, exact ap (phomotopy.mk h) (to_right_inv !eq_con_inv_equiv_con_eq p) } end definition ppi_eq_equiv_internal : (k = l) ≃ (k ~* l) := calc (k = l) ≃ ppi.sigma_char P p₀ k = ppi.sigma_char P p₀ l : eq_equiv_fn_eq (ppi.sigma_char P p₀) k l ... ≃ Σ(p : k = l), pathover (λh, h pt = p₀) (respect_pt k) p (respect_pt l) : sigma_eq_equiv _ _ ... ≃ Σ(p : k = l), respect_pt k = ap (λh, h pt) p ⬝ respect_pt l : sigma_equiv_sigma_right (λp, eq_pathover_equiv_Fl p (respect_pt k) (respect_pt l)) ... ≃ Σ(p : k = l), respect_pt k = apd10 p pt ⬝ respect_pt l : sigma_equiv_sigma_right (λp, equiv_eq_closed_right _ (whisker_right _ (ap_eq_apd10 p _))) ... ≃ Σ(p : k ~ l), respect_pt k = p pt ⬝ respect_pt l : sigma_equiv_sigma_left' eq_equiv_homotopy ... ≃ Σ(p : k ~ l), p pt ⬝ respect_pt l = respect_pt k : sigma_equiv_sigma_right (λp, eq_equiv_eq_symm _ _) ... ≃ (k ~* l) : phomotopy.sigma_char k l definition ppi_eq_equiv_internal_idp : ppi_eq_equiv_internal k k idp = phomotopy.refl k := begin apply ap (phomotopy.mk (homotopy.refl _)), induction k with k k₀, esimp at * ⊢, induction k₀, reflexivity end definition ppi_eq_equiv [constructor] : (k = l) ≃ (k ~* l) := begin refine equiv_change_fun (ppi_eq_equiv_internal k l) _, { apply phomotopy_of_eq }, { intro p, induction p, exact ppi_eq_equiv_internal_idp k } end variables {k l} definition pmap_eq_equiv [constructor] (f g : A →* B) : (f = g) ≃ (f ~* g) := ppi_eq_equiv f g definition eq_of_phomotopy (p : k ~* l) : k = l := to_inv (ppi_eq_equiv k l) p definition eq_of_phomotopy_refl (k : ppi P p₀) : eq_of_phomotopy (phomotopy.refl k) = idpath k := begin apply to_inv_eq_of_eq, reflexivity end definition phomotopy_of_homotopy (h : k ~ l) [Πa, is_set (P a)] : k ~* l := begin fapply phomotopy.mk, { exact h }, { apply is_set.elim } end definition ppi_eq_of_homotopy [Πa, is_set (P a)] (p : k ~ l) : k = l := eq_of_phomotopy (phomotopy_of_homotopy p) definition pmap_eq_of_homotopy [is_set B] (p : f ~ g) : f = g := ppi_eq_of_homotopy p definition phomotopy_of_eq_of_phomotopy (p : k ~* l) : phomotopy_of_eq (eq_of_phomotopy p) = p := to_right_inv (ppi_eq_equiv k l) p definition phomotopy_rec_eq [recursor] {Q : (k ~* k') → Type} (p : k ~* k') (H : Π(q : k = k'), Q (phomotopy_of_eq q)) : Q p := phomotopy_of_eq_of_phomotopy p ▸ H (eq_of_phomotopy p) definition phomotopy_rec_idp [recursor] {Q : Π {k' : ppi P p₀}, (k ~* k') → Type} {k' : ppi P p₀} (H : k ~* k') (q : Q (phomotopy.refl k)) : Q H := begin induction H using phomotopy_rec_eq with t, induction t, exact phomotopy_of_eq_idp k ▸ q, end definition phomotopy_rec_idp' (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type) (q : Q phomotopy.rfl idp) ⦃k' : ppi P p₀⦄ (H : k ~* k') : Q H (eq_of_phomotopy H) := begin induction H using phomotopy_rec_idp, exact transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q end attribute phomotopy.rec' [recursor] definition phomotopy_rec_eq_phomotopy_of_eq {Q : (k ~* l) → Type} (p : k = l) (H : Π(q : k = l), Q (phomotopy_of_eq q)) : phomotopy_rec_eq (phomotopy_of_eq p) H = H p := begin unfold phomotopy_rec_eq, refine ap (λp, p ▸ _) !adj ⬝ _, refine !tr_compose⁻¹ ⬝ _, apply apdt end definition phomotopy_rec_idp_refl {Q : Π{l}, (k ~* l) → Type} (H : Q (phomotopy.refl k)) : phomotopy_rec_idp phomotopy.rfl H = H := !phomotopy_rec_eq_phomotopy_of_eq definition phomotopy_rec_idp'_refl (Q : Π ⦃k' : ppi P p₀⦄, (k ~* k') → (k = k') → Type) (q : Q phomotopy.rfl idp) : phomotopy_rec_idp' Q q phomotopy.rfl = transport (Q phomotopy.rfl) !eq_of_phomotopy_refl⁻¹ q := !phomotopy_rec_idp_refl /- maps out of or into contractible types -/ definition phomotopy_of_is_contr_cod [constructor] (k l : ppi P p₀) [Πa, is_contr (P a)] : k ~* l := phomotopy.mk (λa, !eq_of_is_contr) !eq_of_is_contr definition phomotopy_of_is_contr_cod_pmap [constructor] (f g : A →* B) [is_contr B] : f ~* g := phomotopy_of_is_contr_cod f g definition phomotopy_of_is_contr_dom [constructor] (k l : ppi P p₀) [is_contr A] : k ~* l := begin fapply phomotopy.mk, { intro a, exact eq_of_pathover_idp (change_path !is_prop.elim (apd k !is_prop.elim ⬝op respect_pt k ⬝ (respect_pt l)⁻¹ ⬝o apd l !is_prop.elim)) }, rewrite [▸*, +is_prop_elim_self, +apd_idp, cono_idpo], refine ap (λx, eq_of_pathover_idp (change_path x _)) !is_prop_elim_self ◾ idp ⬝ _, xrewrite [change_path_idp, idpo_concato_eq, inv_con_cancel_right], end /- adjunction between (-)₊ : Type → Type* and pType.carrier : Type* → Type -/ definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) := begin fapply equiv.MK, { intro f a, cases f with f p, exact f (some a) }, { intro f, fconstructor, intro a, cases a, exact pt, exact f a, reflexivity }, { intro f, reflexivity }, { intro f, cases f with f p, esimp, fapply eq_of_phomotopy, fapply phomotopy.mk, { intro a, cases a; all_goals (esimp at *), exact p⁻¹ }, { esimp, exact !con.left_inv }}, end -- pmap_pbool_pequiv is the pointed equivalence definition pmap_pbool_equiv [constructor] (B : Type*) : (pbool →* B) ≃ B := begin fapply equiv.MK, { intro f, cases f with f p, exact f tt }, { intro b, fconstructor, intro u, cases u, exact pt, exact b, reflexivity }, { intro b, reflexivity }, { intro f, cases f with f p, esimp, fapply eq_of_phomotopy, fapply phomotopy.mk, { intro a, cases a; all_goals (esimp at *), exact p⁻¹ }, { esimp, exact !con.left_inv }}, end /- Pointed maps respecting pointed homotopies. In general we need function extensionality for pap, but for particular F we can do it without function extensionality. This might be preferred, because such pointed homotopies compute. On the other hand, when using function extensionality, it's easier to prove that if p is reflexivity, then the resulting pointed homotopy is reflexivity -/ definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g := begin induction p using phomotopy_rec_idp, reflexivity end definition pap_refl (F : (A →* B) → (C →* D)) (f : A →* B) : pap F (phomotopy.refl f) = phomotopy.refl (F f) := !phomotopy_rec_idp_refl definition ap1_phomotopy {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g := pap Ω→ p definition ap1_phomotopy_refl {X Y : Type*} (f : X →* Y) : ap1_phomotopy (phomotopy.refl f) = phomotopy.refl (Ω→ f) := !pap_refl --a proof not using function extensionality: definition ap1_phomotopy_explicit {f g : A →* B} (p : f ~* g) : Ω→ f ~* Ω→ g := begin induction p with p q, induction f with f pf, induction g with g pg, induction B with B b, esimp at * ⊢, induction q, induction pg, fapply phomotopy.mk, { intro l, refine _ ⬝ !idp_con⁻¹ᵖ, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, apply ap_con_eq_con_ap}, { induction A with A a, unfold [ap_con_eq_con_ap], generalize p a, generalize g a, intro b q, induction q, reflexivity} end definition apn_phomotopy {f g : A →* B} (n : ℕ) (p : f ~* g) : apn n f ~* apn n g := begin induction n with n IH, { exact p}, { exact ap1_phomotopy IH} end -- the following two definitiongs are mostly the same, maybe we should remove one definition ap_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) : ap (λf : A →* B, f a) (eq_of_phomotopy p) = p a := ap010 to_homotopy (phomotopy_of_eq_of_phomotopy p) a definition to_fun_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) (a : A) : ap010 pmap.to_fun (eq_of_phomotopy p) a = p a := begin induction p using phomotopy_rec_idp, exact ap (λx, ap010 pmap.to_fun x a) !eq_of_phomotopy_refl end definition ap1_eq_of_phomotopy {A B : Type*} {f g : A →* B} (p : f ~* g) : ap Ω→ (eq_of_phomotopy p) = eq_of_phomotopy (ap1_phomotopy p) := begin induction p using phomotopy_rec_idp, refine ap02 _ !eq_of_phomotopy_refl ⬝ !eq_of_phomotopy_refl⁻¹ ⬝ ap eq_of_phomotopy _, exact !ap1_phomotopy_refl⁻¹ end /- pointed homotopies between the given pointed maps -/ definition ap1_pid [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) := begin fapply phomotopy.mk, { intro p, esimp, refine !idp_con ⬝ !ap_id}, { reflexivity} end definition ap1_pinverse [constructor] {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) := begin fapply phomotopy.mk, { intro p, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ }, { reflexivity} end definition ap1_gen_compose {A B C : Type} (g : B → C) (f : A → B) {a₁ a₂ : A} {b₁ b₂ : B} {c₁ c₂ : C} (q₁ : f a₁ = b₁) (q₂ : f a₂ = b₂) (r₁ : g b₁ = c₁) (r₂ : g b₂ = c₂) (p : a₁ = a₂) : ap1_gen (g ∘ f) (ap g q₁ ⬝ r₁) (ap g q₂ ⬝ r₂) p = ap1_gen g r₁ r₂ (ap1_gen f q₁ q₂ p) := begin induction p, induction q₁, induction q₂, induction r₁, induction r₂, reflexivity end definition ap1_gen_compose_idp {A B C : Type} (g : B → C) (f : A → B) {a : A} {b : B} {c : C} (q : f a = b) (r : g b = c) : ap1_gen_compose g f q q r r idp ⬝ (ap (ap1_gen g r r) (ap1_gen_idp f q) ⬝ ap1_gen_idp g r) = ap1_gen_idp (g ∘ f) (ap g q ⬝ r) := begin induction q, induction r, reflexivity end definition ap1_pcompose [constructor] {A B C : Type*} (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f := phomotopy.mk (ap1_gen_compose g f (respect_pt f) (respect_pt f) (respect_pt g) (respect_pt g)) (ap1_gen_compose_idp g f (respect_pt f) (respect_pt g)) definition ap1_pconst [constructor] (A B : Type*) : Ω→(pconst A B) ~* pconst (Ω A) (Ω B) := phomotopy.mk (λp, ap1_gen_idp_left (const A pt) p ⬝ ap_constant p pt) rfl definition ap1_gen_con_left {A B : Type} {a a' : A} {b₀ b₁ b₂ : B} {f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ q₁ : b₀ = b₁} {q₀' q₁' : b₁ = b₂} (r₀ : f a = q₀) (r₁ : f a' = q₁) (r₀' : f' a = q₀') (r₁' : f' a' = q₁') (p : a = a') : ap1_gen (λa, f a ⬝ f' a) (r₀ ◾ r₀') (r₁ ◾ r₁') p = whisker_right q₀' (ap1_gen f r₀ r₁ p) ⬝ whisker_left q₁ (ap1_gen f' r₀' r₁' p) := begin induction r₀, induction r₁, induction r₀', induction r₁', induction p, reflexivity end definition ap1_gen_con_left_idp {A B : Type} {a : A} {b₀ b₁ b₂ : B} {f : A → b₀ = b₁} {f' : A → b₁ = b₂} {q₀ : b₀ = b₁} {q₁ : b₁ = b₂} (r₀ : f a = q₀) (r₁ : f' a = q₁) : ap1_gen_con_left r₀ r₀ r₁ r₁ idp = !con.left_inv ⬝ (ap (whisker_right q₁) !con.left_inv ◾ ap (whisker_left _) !con.left_inv)⁻¹ := begin induction r₀, induction r₁, reflexivity end definition ptransport_change_eq [constructor] {A : Type} (B : A → Type*) {a a' : A} {p q : a = a'} (r : p = q) : ptransport B p ~* ptransport B q := phomotopy.mk (λb, ap (λp, transport B p b) r) begin induction r, apply idp_con end definition pnatural_square {A B : Type} (X : B → Type*) {f g : A → B} (h : Πa, X (f a) →* X (g a)) {a a' : A} (p : a = a') : h a' ∘* ptransport X (ap f p) ~* ptransport X (ap g p) ∘* h a := by induction p; exact !pcompose_pid ⬝* !pid_pcompose⁻¹* definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) := begin induction n with n IH, { reflexivity}, { exact ap1_phomotopy IH ⬝* ap1_pid} end definition apn_pconst (A B : Type*) (n : ℕ) : apn n (pconst A B) ~* pconst (Ω[n] A) (Ω[n] B) := begin induction n with n IH, { reflexivity }, { exact ap1_phomotopy IH ⬝* !ap1_pconst } end definition apn_pcompose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f := begin induction n with n IH, { reflexivity}, { refine ap1_phomotopy IH ⬝* _, apply ap1_pcompose} end definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A := by reflexivity definition pinverse_pinverse (A : Type*) : pinverse ∘* pinverse ~* pid (Ω A) := begin fapply phomotopy.mk, { apply inv_inv}, { reflexivity} end definition pcast_ap_loop [constructor] {A B : Type*} (p : A = B) : pcast (ap Ω p) ~* ap1 (pcast p) := begin fapply phomotopy.mk, { intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹}, { induction p, reflexivity} end definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) : ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) := begin fapply phomotopy.mk, { intro a, esimp, apply idp_con}, { reflexivity} end definition pcast_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a) {a₁ a₂ : A} (p : a₁ = a₂) : pcast (ap C p) ∘* f a₁ ~* f a₂ ∘* pcast (ap B p) := phomotopy.mk begin induction p, reflexivity end begin induction p, esimp, refine !idp_con ⬝ !idp_con ⬝ !ap_id⁻¹ end /- pointed equivalences -/ structure pequiv (A B : Type*) := mk' :: (to_pmap : A →* B) (to_pinv1 : B →* A) (to_pinv2 : B →* A) (pright_inv : to_pmap ∘* to_pinv1 ~* pid B) (pleft_inv : to_pinv2 ∘* to_pmap ~* pid A) infix ` ≃* `:25 := pequiv definition pmap_of_pequiv [unfold 3] [coercion] [reducible] {A B : Type*} (f : A ≃* B) : @ppi A (λa, B) pt := pequiv.to_pmap f definition to_pinv [unfold 3] (f : A ≃* B) : B →* A := pequiv.to_pinv1 f definition pleft_inv' (f : A ≃* B) : to_pinv f ∘* f ~* pid A := let g := to_pinv f in let h := pequiv.to_pinv2 f in calc g ∘* f ~* pid A ∘* (g ∘* f) : by exact !pid_pcompose⁻¹* ... ~* (h ∘* f) ∘* (g ∘* f) : by exact pwhisker_right _ (pequiv.pleft_inv f)⁻¹* ... ~* h ∘* (f ∘* g) ∘* f : by exact !passoc ⬝* pwhisker_left _ !passoc⁻¹* ... ~* h ∘* pid B ∘* f : by exact !pwhisker_left (!pwhisker_right !pequiv.pright_inv) ... ~* h ∘* f : by exact pwhisker_left _ !pid_pcompose ... ~* pid A : by exact pequiv.pleft_inv f definition equiv_of_pequiv [coercion] [constructor] (f : A ≃* B) : A ≃ B := have is_equiv f, from adjointify f (to_pinv f) (pequiv.pright_inv f) (pleft_inv' f), equiv.mk f _ attribute pointed._trans_of_equiv_of_pequiv pointed._trans_of_pmap_of_pequiv [unfold 3] definition pequiv.to_is_equiv [instance] [constructor] (f : A ≃* B) : is_equiv (pointed._trans_of_equiv_of_pequiv f) := adjointify f (to_pinv f) (pequiv.pright_inv f) (pleft_inv' f) definition pequiv.to_is_equiv' [instance] [constructor] (f : A ≃* B) : is_equiv (pointed._trans_of_pmap_of_pequiv f) := pequiv.to_is_equiv f protected definition pequiv.MK [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B := pequiv.mk' f g g fg gf definition pinv [constructor] (f : A →* B) (H : is_equiv f) : B →* A := pmap.mk f⁻¹ᶠ (ap f⁻¹ᶠ (respect_pt f)⁻¹ ⬝ (left_inv f pt)) definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B := pequiv.mk' f (pinv f H) (pinv f H) abstract begin fapply phomotopy.mk, exact right_inv f, induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, esimp, exact adj f pt ⬝ ap02 f !idp_con⁻¹ end end abstract begin fapply phomotopy.mk, exact left_inv f, induction f with f f₀, induction B with B b₀, esimp at *, induction f₀, esimp, exact !idp_con⁻¹ ⬝ !idp_con⁻¹ end end definition pequiv.mk [constructor] (f : A → B) (H : is_equiv f) (p : f pt = pt) : A ≃* B := pequiv_of_pmap (pmap.mk f p) H definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B := pequiv.mk f _ H protected definition pequiv.MK' [constructor] (f : A →* B) (g : B → A) (gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B := pequiv.mk f (adjointify f g fg gf) (respect_pt f) /- reflexivity and symmetry (transitivity is below) -/ protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A := pequiv.mk' (pid A) (pid A) (pid A) !pid_pcompose !pcompose_pid protected definition pequiv.rfl [constructor] : A ≃* A := pequiv.refl A protected definition pequiv.symm [symm] [constructor] (f : A ≃* B) : B ≃* A := pequiv.MK (to_pinv f) f (pequiv.pright_inv f) (pleft_inv' f) postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A := pleft_inv' f definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B := pequiv.pright_inv f definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f) : pequiv.to_pmap (pequiv_of_pmap f H) = f := by reflexivity definition to_pmap_pequiv_MK [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK f g gf fg ~* f := by reflexivity definition to_pinv_pequiv_MK [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK f g gf fg) ~* g := by reflexivity /- more on pointed equivalences -/ definition pequiv_ap [constructor] {A : Type} (B : A → Type*) {a a' : A} (p : a = a') : B a ≃* B a' := pequiv_of_pmap (ptransport B p) !is_equiv_tr definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B := pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq) definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f') : A ≃* B := pequiv.MK' f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq)) definition pequiv_rect' (f : A ≃* B) (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) := left_inv f a ▸ g (f a) definition pua {A B : Type*} (f : A ≃* B) : A = B := pType_eq (equiv_of_pequiv f) !respect_pt definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B := pequiv_of_pmap (pcast p) !is_equiv_tr definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B := pType_eq (equiv_of_pequiv p) !respect_pt definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B := pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end -- rename pequiv_of_eq_natural definition pequiv_of_eq_commute [constructor] {A : Type} {B C : A → Type*} (f : Πa, B a →* C a) {a₁ a₂ : A} (p : a₁ = a₂) : pequiv_of_eq (ap C p) ∘* f a₁ ~* f a₂ ∘* pequiv_of_eq (ap B p) := pcast_commute f p -- definition pequiv.eta_expand [constructor] {A B : Type*} (f : A ≃* B) : A ≃* B := -- pequiv.mk' f (to_pinv f) (pequiv.to_pinv2 f) (pright_inv f) _ /- the theorem pequiv_eq, which gives a condition for two pointed equivalences are equal is in types.equiv to avoid circular imports -/ /- computation rules of pointed homotopies, possibly combined with pointed equivalences -/ definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h := begin refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _: refine !passoc⁻¹* ⬝* _: refine pwhisker_right _ (pleft_inv f) ⬝* _: apply pid_pcompose end definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h := begin refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _: refine !passoc ⬝* _: refine pwhisker_left _ (pright_inv f) ⬝* _: apply pcompose_pid end definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C} (p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* := begin refine _ ⬝* pwhisker_right _ p, symmetry, refine !passoc ⬝* _, refine pwhisker_left _ (pright_inv f) ⬝* _, apply pcompose_pid end definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C} (p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f := begin refine _ ⬝* pwhisker_right _ p, symmetry, refine !passoc ⬝* _, refine pwhisker_left _ (pleft_inv f) ⬝* _, apply pcompose_pid end definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C} (p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g := (phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹* definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C} (p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g := (phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹* definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C} (p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h := begin refine _ ⬝* pwhisker_left _ p, symmetry, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (pleft_inv f) ⬝* _, apply pid_pcompose end definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C} (p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h := begin refine _ ⬝* pwhisker_left _ p, symmetry, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (pright_inv f) ⬝* _, apply pid_pcompose end definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C} (p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g := (phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹* definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C} (p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g := (phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹* definition pcompose2 {A B C : Type*} {g g' : B →* C} {f f' : A →* B} (q : g ~* g') (p : f ~* f') : g ∘* f ~* g' ∘* f' := pwhisker_right f q ⬝* pwhisker_left g' p infixr ` ◾* `:80 := pcompose2 definition phomotopy_pinv_of_phomotopy_pid {A B : Type*} {f : A →* B} {g : B ≃* A} (p : g ∘* f ~* pid A) : f ~* g⁻¹ᵉ* := phomotopy_pinv_left_of_phomotopy p ⬝* !pcompose_pid definition phomotopy_pinv_of_phomotopy_pid' {A B : Type*} {f : A →* B} {g : B ≃* A} (p : f ∘* g ~* pid B) : f ~* g⁻¹ᵉ* := phomotopy_pinv_right_of_phomotopy p ⬝* !pid_pcompose definition pinv_phomotopy_of_pid_phomotopy {A B : Type*} {f : A →* B} {g : B ≃* A} (p : pid A ~* g ∘* f) : g⁻¹ᵉ* ~* f := (phomotopy_pinv_of_phomotopy_pid p⁻¹*)⁻¹* definition pinv_phomotopy_of_pid_phomotopy' {A B : Type*} {f : A →* B} {g : B ≃* A} (p : pid B ~* f ∘* g) : g⁻¹ᵉ* ~* f := (phomotopy_pinv_of_phomotopy_pid' p⁻¹*)⁻¹* definition pinv_pcompose_cancel_left {A B C : Type*} (g : B ≃* C) (f : A →* B) : g⁻¹ᵉ* ∘* (g ∘* f) ~* f := !passoc⁻¹* ⬝* pwhisker_right f !pleft_inv ⬝* !pid_pcompose definition pcompose_pinv_cancel_left {A B C : Type*} (g : C ≃* B) (f : A →* B) : g ∘* (g⁻¹ᵉ* ∘* f) ~* f := !passoc⁻¹* ⬝* pwhisker_right f !pright_inv ⬝* !pid_pcompose definition pinv_pcompose_cancel_right {A B C : Type*} (g : B →* C) (f : B ≃* A) : (g ∘* f⁻¹ᵉ*) ∘* f ~* g := !passoc ⬝* pwhisker_left g !pleft_inv ⬝* !pcompose_pid definition pcompose_pinv_cancel_right {A B C : Type*} (g : B →* C) (f : A ≃* B) : (g ∘* f) ∘* f⁻¹ᵉ* ~* g := !passoc ⬝* pwhisker_left g !pright_inv ⬝* !pcompose_pid definition pinv_pinv {A B : Type*} (f : A ≃* B) : (f⁻¹ᵉ*)⁻¹ᵉ* ~* f := (phomotopy_pinv_of_phomotopy_pid (pleft_inv f))⁻¹* definition pinv2 {A B : Type*} {f f' : A ≃* B} (p : f ~* f') : f⁻¹ᵉ* ~* f'⁻¹ᵉ* := phomotopy_pinv_of_phomotopy_pid (pinv_right_phomotopy_of_phomotopy (!pid_pcompose ⬝* p)⁻¹*) postfix [parsing_only] `⁻²*`:(max+10) := pinv2 protected definition pequiv.trans [trans] [constructor] (f : A ≃* B) (g : B ≃* C) : A ≃* C := pequiv.MK (g ∘* f) (f⁻¹ᵉ* ∘* g⁻¹ᵉ*) abstract !passoc ⬝* pwhisker_left _ (pinv_pcompose_cancel_left g f) ⬝* pleft_inv f end abstract !passoc ⬝* pwhisker_left _ (pcompose_pinv_cancel_left f g⁻¹ᵉ*) ⬝* pright_inv g end definition pequiv_compose {A B C : Type*} (g : B ≃* C) (f : A ≃* B) : A ≃* C := pequiv.trans f g infix ` ⬝e* `:75 := pequiv.trans infixr ` ∘*ᵉ `:60 := pequiv_compose definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C) : pequiv.to_pmap (f ⬝e* g) = g ∘* f := by reflexivity definition to_fun_pequiv_trans {X Y Z : Type*} (f : X ≃* Y) (g :Y ≃* Z) : f ⬝e* g ~ g ∘ f := λx, idp definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C := p ⬝e* pequiv_of_eq q definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C := pequiv_of_eq p ⬝e* q infix ` ⬝e*p `:75 := peconcat_eq infix ` ⬝pe* `:75 := eq_peconcat definition trans_pinv {A B C : Type*} (f : A ≃* B) (g : B ≃* C) : (f ⬝e* g)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g⁻¹ᵉ* := by reflexivity definition pinv_trans_pinv_left {A B C : Type*} (f : B ≃* A) (g : B ≃* C) : (f⁻¹ᵉ* ⬝e* g)⁻¹ᵉ* ~* f ∘* g⁻¹ᵉ* := by reflexivity definition pinv_trans_pinv_right {A B C : Type*} (f : A ≃* B) (g : C ≃* B) : (f ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f⁻¹ᵉ* ∘* g := by reflexivity definition pinv_trans_pinv_pinv {A B C : Type*} (f : B ≃* A) (g : C ≃* B) : (f⁻¹ᵉ* ⬝e* g⁻¹ᵉ*)⁻¹ᵉ* ~* f ∘* g := by reflexivity /- pointed equivalences between particular pointed types -/ -- TODO: remove is_equiv_apn, which is proven again here definition loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B := pequiv.MK (apn n f) (apn n f⁻¹ᵉ*) abstract begin induction n with n IH, { apply pleft_inv}, { replace nat.succ n with n + 1, rewrite [+apn_succ], refine !ap1_pcompose⁻¹* ⬝* _, refine ap1_phomotopy IH ⬝* _, apply ap1_pid} end end abstract begin induction n with n IH, { apply pright_inv}, { replace nat.succ n with n + 1, rewrite [+apn_succ], refine !ap1_pcompose⁻¹* ⬝* _, refine ap1_phomotopy IH ⬝* _, apply ap1_pid} end end definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B := loopn_pequiv_loopn 1 f definition loop_pequiv_eq_closed [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK (a = a) idp ≃* pointed.MK (a' = a') idp := pequiv_of_equiv (loop_equiv_eq_closed p) (con.left_inv p) definition to_pmap_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : loopn_pequiv_loopn n f ~* apn n f := by reflexivity definition to_pinv_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* := by reflexivity definition loopn_pequiv_loopn_con (n : ℕ) (f : A ≃* B) (p q : Ω[n+1] A) : loopn_pequiv_loopn (n+1) f (p ⬝ q) = loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q := ap1_con (loopn_pequiv_loopn n f) p q definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A) : loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q := loopn_pequiv_loopn_con 0 f p q definition loopn_pequiv_loopn_rfl (n : ℕ) (A : Type*) : loopn_pequiv_loopn n (pequiv.refl A) ~* pequiv.refl (Ω[n] A) := begin exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n, end definition loop_pequiv_loop_rfl (A : Type*) : loop_pequiv_loop (pequiv.refl A) ~* pequiv.refl (Ω A) := loopn_pequiv_loopn_rfl 1 A definition apn_pinv (n : ℕ) {A B : Type*} (f : A ≃* B) : Ω→[n] f⁻¹ᵉ* ~* (loopn_pequiv_loopn n f)⁻¹ᵉ* := by reflexivity definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') : ppmap A B →* ppmap A' B' := pmap.mk (λh, g ∘* h ∘* f) abstract begin fapply eq_of_phomotopy, fapply phomotopy.mk, { esimp, intro a, exact respect_pt g}, { rewrite [▸*, ap_constant], exact !idp_con⁻¹ } end end definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A := pequiv_of_pmap pinverse !is_equiv_eq_inverse definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK A a ≃* pointed.MK A a' := pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id definition pointed_eta_pequiv [constructor] (A : Type*) : A ≃* pointed.MK A pt := pequiv.mk id !is_equiv_id idp /- every pointed map is homotopic to one of the form `pmap_of_map _ _`, up to some pointed equivalences -/ definition phomotopy_pmap_of_map {A B : Type*} (f : A →* B) : (pointed_eta_pequiv B ⬝e* (pequiv_of_eq_pt (respect_pt f))⁻¹ᵉ*) ∘* f ∘* (pointed_eta_pequiv A)⁻¹ᵉ* ~* pmap_of_map f pt := begin fapply phomotopy.mk, { reflexivity}, { symmetry, exact (!ap_id ⬝ !idp_con) ◾ (!idp_con ⬝ !ap_id) ⬝ !con.right_inv } end /- properties of iterated loop space -/ variable (A) definition loopn_succ_in (n : ℕ) : Ω[succ n] A ≃* Ω[n] (Ω A) := begin induction n with n IH, { reflexivity}, { exact loop_pequiv_loop IH} end definition loopn_add (n m : ℕ) : Ω[n] (Ω[m] A) ≃* Ω[m+n] (A) := begin induction n with n IH, { reflexivity}, { exact loop_pequiv_loop IH} end definition loopn_succ_out (n : ℕ) : Ω[succ n] A ≃* Ω(Ω[n] A) := by reflexivity variable {A} definition loopn_succ_in_con {n : ℕ} (p q : Ω[succ (succ n)] A) : loopn_succ_in A (succ n) (p ⬝ q) = loopn_succ_in A (succ n) p ⬝ loopn_succ_in A (succ n) q := !loop_pequiv_loop_con definition loopn_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A := begin intros, fapply pType_eq, { esimp, transitivity _, apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹), esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv}, { esimp, apply con.left_inv} end definition loopn_space_loop_irrel (n : ℕ) (p : point A = point A) : Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType := calc Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : eq_of_pequiv !loopn_succ_in ... = Ω[n] (Ω[2] A) : loopn_loop_irrel ... = Ω[2+n] A : eq_of_pequiv !loopn_add ... = Ω[n+2] A : by rewrite [algebra.add.comm] definition apn_succ_phomotopy_in (n : ℕ) (f : A →* B) : loopn_succ_in B n ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n := begin induction n with n IH, { reflexivity}, { exact !ap1_pcompose⁻¹* ⬝* ap1_phomotopy IH ⬝* !ap1_pcompose} end definition loopn_succ_in_natural {A B : Type*} (n : ℕ) (f : A →* B) : loopn_succ_in B n ∘* Ω→[n+1] f ~* Ω→[n] (Ω→ f) ∘* loopn_succ_in A n := !apn_succ_phomotopy_in definition loopn_succ_in_inv_natural {A B : Type*} (n : ℕ) (f : A →* B) : Ω→[n + 1] f ∘* (loopn_succ_in A n)⁻¹ᵉ* ~* (loopn_succ_in B n)⁻¹ᵉ* ∘* Ω→[n] (Ω→ f):= begin apply pinv_right_phomotopy_of_phomotopy, refine _ ⬝* !passoc⁻¹*, apply phomotopy_pinv_left_of_phomotopy, apply apn_succ_phomotopy_in end end pointed