/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad The power function on the natural numbers. -/ import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power namespace nat definition nat_has_pow_nat [instance] [priority nat.prio] : has_pow_nat nat := has_pow_nat.mk has_pow_nat.pow_nat theorem pow_le_pow_of_le {x y : ℕ} (i : ℕ) (H : x ≤ y) : x^i ≤ y^i := pow_le_pow_of_le i !zero_le H theorem eq_zero_of_pow_eq_zero {a m : ℕ} (H : a^m = 0) : a = 0 := or.elim (eq_zero_or_pos m) (suppose m = 0, by rewrite [`m = 0` at H, pow_zero at H]; contradiction) (suppose m > 0, have h₁ : ∀ m, a^succ m = 0 → a = 0, begin intro m, induction m with m ih, {krewrite pow_one; intros; assumption}, rewrite pow_succ, intro H, cases eq_zero_or_eq_zero_of_mul_eq_zero H with h₃ h₄, assumption, exact ih h₄ end, obtain m' (h₂ : m = succ m'), from exists_eq_succ_of_pos `m > 0`, show a = 0, by rewrite h₂ at H; apply h₁ m' H) -- generalize to semirings? theorem le_pow_self {x : ℕ} (H : x > 1) : ∀ i, i ≤ x^i | 0 := !zero_le | (succ j) := have x > 0, from lt.trans zero_lt_one H, have h₁ : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ this), have x ≥ 2, from succ_le_of_lt H, calc succ j = j + 1 : rfl ... ≤ x^j + 1 : add_le_add_right (le_pow_self j) ... ≤ x^j + x^j : add_le_add_left h₁ ... = x^j * (1 + 1) : by rewrite [left_distrib, *mul_one] ... = x^j * 2 : rfl ... ≤ x^j * x : mul_le_mul_left _ `x ≥ 2` ... = x^(succ j) : pow_succ' -- TODO: eventually this will be subsumed under the algebraic theorems theorem mul_self_eq_pow_2 (a : nat) : a * a = a ^ 2 := show a * a = a ^ (succ (succ zero)), from by krewrite [*pow_succ, *pow_zero, mul_one] theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → a ^ b = a ^ c → b = c | a 0 0 h₁ h₂ := rfl | a (succ b) 0 h₁ h₂ := have a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂), have (1:nat) < 1, by rewrite [this at h₁]; exact h₁, absurd `1 <[nat] 1` !lt.irrefl | a 0 (succ c) h₁ h₂ := have a = 1, by rewrite [pow_succ at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)), have (1:nat) < 1, by rewrite [this at h₁]; exact h₁, absurd `1 <[nat] 1` !lt.irrefl | a (succ b) (succ c) h₁ h₂ := have a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial), have a^b = a^c, by rewrite [*pow_succ at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero this) h₂), by rewrite [pow_cancel_left h₁ this] theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → (a ^ succ b) / a = a ^ b | a 0 h := by rewrite [pow_succ, pow_zero, mul_one, nat.div_self (pos_of_ne_zero h)] | a (succ b) h := by rewrite [pow_succ, nat.mul_div_cancel_left _ (pos_of_ne_zero h)] lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i ∣ i^n | i 0 h := absurd h !lt.irrefl | i (succ n) h := by rewrite [pow_succ']; apply dvd_mul_left lemma dvd_pow_of_dvd_of_pos : ∀ {i j n : nat}, i ∣ j → n > 0 → i ∣ j^n | i j 0 h₁ h₂ := absurd h₂ !lt.irrefl | i j (succ n) h₁ h₂ := by rewrite [pow_succ']; apply dvd_mul_of_dvd_right h₁ lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i ^ n) % i = 0 := iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h) lemma pow_dvd_of_pow_succ_dvd {p i n : nat} : p^(succ i) ∣ n → p^i ∣ n := suppose p^(succ i) ∣ n, have p^i ∣ p^(succ i), by rewrite [pow_succ']; apply nat.dvd_of_eq_mul; apply rfl, dvd.trans `p^i ∣ p^(succ i)` `p^(succ i) ∣ n` lemma dvd_of_pow_succ_dvd_mul_pow {p i n : nat} (Ppos : p > 0) : p^(succ i) ∣ (n * p^i) → p ∣ n := by rewrite [pow_succ]; apply nat.dvd_of_mul_dvd_mul_right; apply pow_pos_of_pos _ Ppos lemma coprime_pow_right {a b} : ∀ n, coprime b a → coprime b (a^n) | 0 h := !comprime_one_right | (succ n) h := begin rewrite [pow_succ'], apply coprime_mul_right, exact coprime_pow_right n h, exact h end lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a := take n, suppose coprime b a, coprime_swap (coprime_pow_right n (coprime_swap this)) end nat