/- Copyright (c) 2016 Marcos Mazari. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Ideals and quotient rings. Authors: Marcos Mazari, Jeremy Avigad -/ import data.set algebra.ring theories.move open function eq.ops algebra set classical /- TODO: move -/ abbreviation contrapos := @not_imp_not_of_imp lemma ne_of_not_mem_of_mem {A : Type} {I J : set A} {y : A} (H1 : y ∉ I) (H2 : y ∈ J) : I ≠ J := by intro H; rewrite H at H1; exact H1 H2 lemma exists_mem_and_not_mem_of_not_subset {A : Type} {I J : set A} (H : ¬ J ⊆ I) : ∃ y, y ∈ J ∧ y ∉ I := obtain x (Hx : ¬ (x ∈ J → x ∈ I)), from exists_not_of_not_forall H, exists.intro x (and_not_of_not_implies Hx) lemma exists_mem_and_not_mem_of_ne_of_subset {A : Type} {I J : set A} (H1 : I ≠ J) (H2 : I ⊆ J) : ∃ y, y ∈ J ∧ y ∉ I := exists_mem_and_not_mem_of_not_subset (assume H, H1 (eq_of_subset_of_subset H2 H)) /- TODO: move to file for additive subgroups -/ section variable {A : Type} structure is_zero_closed [class] [has_zero A] (S : set A) : Prop := (zero_mem : zero ∈ S) proposition zero_mem [has_zero A] {S : set A} [is_zero_closed S] : 0 ∈ S := is_zero_closed.zero_mem _ S structure is_add_closed [class] [has_add A] (S : set A) : Prop := (add_mem : ∀₀ a ∈ S, ∀₀ b ∈ S, a + b ∈ S) proposition add_mem [has_add A] {S : set A} [is_add_closed S] {a : A} (aS : a ∈ S) {b : A} (bS : b ∈ S) : a + b ∈ S := is_add_closed.add_mem _ S aS bS structure is_neg_closed [class] [has_neg A] (S : set A) : Prop := (neg_mem : ∀₀ a ∈ S, -a ∈ S) proposition neg_mem [has_neg A] {S : set A} [is_neg_closed S] {a : A} (aS : a ∈ S) : -a ∈ S := is_neg_closed.neg_mem _ S aS proposition mem_of_neg_mem [add_group A] {S : set A} [is_neg_closed S] {a : A} (naS : -a ∈ S) : a ∈ S := by rewrite -neg_neg; exact neg_mem naS proposition neg_mem_iff [add_group A] {S : set A} [is_neg_closed S] (a : A) : -a ∈ S ↔ a ∈ S := iff.intro mem_of_neg_mem neg_mem proposition sub_mem_swap [add_group A] {S : set A} [is_neg_closed S] {a b : A} (H : b - a ∈ S) : a - b ∈ S := mem_of_neg_mem (by rewrite neg_sub; assumption) proposition sub_mem_iff [add_group A] {S : set A} [is_neg_closed S] (a b : A) : a - b ∈ S ↔ b - a ∈ S := iff.intro sub_mem_swap sub_mem_swap structure is_add_subgroup [class] [add_group A] (S : set A) extends is_zero_closed S, is_add_closed S, is_neg_closed S : Prop definition set_add [has_add A] (S T : set A) : set A := {x | ∃₀ y ∈ S, ∃₀ z ∈ T, x = y + z} end namespace set_add infix + := set_add end set_add open set_add section variables {A : Type} proposition mem_set_add [has_add A] {S T : set A} {a b c : A} (aS : a ∈ S) (bT : b ∈ T) (ceq : c = a + b) : c ∈ S + T := exists.intro a (and.intro aS (exists.intro b (and.intro bT ceq))) proposition subset_set_add_right [add_monoid A] (S T : set A) [is_zero_closed T] : S ⊆ S + T := take a, assume aS, mem_set_add aS zero_mem (by simp) proposition subset_set_add_left [add_monoid A] (S T : set A) [is_zero_closed S] : T ⊆ S + T := take a, assume aT, mem_set_add zero_mem aT (by simp) end section variable {A : Type} variable [comm_ring A] structure is_ideal [class] (I : set A) extends is_zero_closed I, is_add_closed I : Prop := (mul_arb_mem : ∀ x, ∀₀ y ∈ I, x * y ∈ I) proposition mul_arb_mem {I : set A} [is_ideal I] (x : A) {y : A} (yI : y ∈ I) : x * y ∈ I := is_ideal.mul_arb_mem _ I x yI proposition is_add_subgroup_of_is_ideal [instance] (I : set A) [is_ideal I] : is_add_subgroup I := is_add_subgroup.mk zero_mem (@add_mem _ _ _ _) (λ a aI, by rewrite [neg_eq_neg_one_mul]; apply mul_arb_mem _ aI) proposition mul_arb_mem' {I : set A} [H : is_ideal I] {x : A} (xI : x ∈ I) (y : A) : x * y ∈ I := by rewrite mul.comm; apply mul_arb_mem y xI lemma eq_univ_of_one_mem_of_is_ideal {I : set A} (H : 1 ∈ I) [is_ideal I] : I = univ := eq_univ_of_forall (take x, have x * 1 ∈ I, from mul_arb_mem x H, by simp) theorem is_ideal_inter ( I J : set A) (HI : is_ideal I) (HJ : is_ideal J) : is_ideal (I ∩ J) := have H1 : 0 ∈ I ∩ J, from and.intro zero_mem zero_mem, have H2 : ∀₀ x ∈ I ∩ J, ∀₀ y ∈ I ∩ J, x + y ∈ I ∩ J, from take x, assume xIJ, take y, assume yIJ, obtain xI xJ, from xIJ, obtain yI yJ, from yIJ, show x + y ∈ I ∩ J, from and.intro (add_mem xI yI) (add_mem xJ yJ), have H3 : ∀ x, ∀₀ y ∈ I ∩ J, x * y ∈ I ∩ J, from take x y, assume yIJ, obtain yI yJ, from yIJ, show x * y ∈ I ∩ J, from and.intro (mul_arb_mem x yI)(mul_arb_mem x yJ), show is_ideal (I ∩ J), from is_ideal.mk H1 H2 H3 theorem is_ideal_singleton_zero : is_ideal '{(0 : A)} := have H1 : 0 ∈ '{0}, from mem_singleton 0, have H2 : ∀₀ x ∈ '{0}, ∀₀ y ∈ '{0}, x + y ∈ '{0}, from take x, assume xmem, take y, assume ymem, by rewrite [eq_of_mem_singleton xmem, eq_of_mem_singleton ymem, zero_add]; apply mem_singleton, have H3 : ∀x, ∀₀ y ∈ '{0}, x * y ∈ '{0}, from take x y, assume ymem, by rewrite [eq_of_mem_singleton ymem, mul_zero]; apply mem_singleton, is_ideal.mk H1 H2 H3 lemma is_ideal_univ : is_ideal (@univ A) := have H1 : 0 ∈ @univ A, from trivial, have H2: ∀₀ x ∈ univ, ∀₀ y ∈ univ, x + y ∈ (@univ A), from λ x xmem y ymem, trivial, have H3 : ∀ x, ∀₀ y ∈ univ, x * y ∈ (@univ A), from λ x y ymem, trivial, is_ideal.mk H1 H2 H3 lemma is_ideal_set_add [instance] (I J : set A) [is_ideal I] [is_ideal J] : is_ideal (I + J) := have H1 : 0 ∈ I + J, from mem_set_add zero_mem zero_mem (by simp), have H2 : ∀₀ x ∈ I + J, ∀₀ y ∈ I + J, x + y ∈ I + J, from λ x xmem y ymem, obtain ix [ixI [jx [jxJ xeq]]], from xmem, obtain iy [iyI [jy [jyJ yeq]]], from ymem, show x + y ∈ I + J, from mem_set_add (add_mem ixI iyI) (add_mem jxJ jyJ) (by rewrite [xeq, yeq, *add.assoc, add.left_comm jx]), have H3 : ∀ x, ∀₀ y ∈ I + J, x * y ∈ I + J, from λ x y ymem, obtain iy [iyI [jy [jyJ yeq]]], from ymem, show x * y ∈ I + J, from mem_set_add (mul_arb_mem x iyI) (mul_arb_mem x jyJ) (by rewrite [yeq, left_distrib]), is_ideal.mk H1 H2 H3 lemma set_add_subset_of_is_ideal {S T I : set A} [is_ideal I] (SsubI : S ⊆ I) (TsubI : T ⊆ I) : S + T ⊆ I := take x, suppose x ∈ S + T, obtain s [sS [t [tT xeq]]], from this, have s + t ∈ I, from add_mem (SsubI sS) (TsubI tT), show x ∈ I, by rewrite xeq; apply this /- ideal generated by a set -/ inductive ideal_generated_by (S : set A) : A → Prop := | generators_mem : ∀ {x}, x ∈ S → ideal_generated_by S x | zero_closed : ideal_generated_by S 0 | add_closed : ∀ {x y}, ideal_generated_by S x → ideal_generated_by S y → ideal_generated_by S (x + y) | mul_arb_closed : ∀ r {x}, ideal_generated_by S x → ideal_generated_by S (r * x) theorem subset_ideal_generated_by (S : set A) : S ⊆ ideal_generated_by S := λ x xS, ideal_generated_by.generators_mem xS theorem is_ideal_ideal_generated_by [instance] (S : set A) : is_ideal (ideal_generated_by S) := is_ideal.mk (ideal_generated_by.zero_closed S) (λ x xmem y ymem, ideal_generated_by.add_closed xmem ymem) (λ r x xmem, ideal_generated_by.mul_arb_closed r xmem) theorem ideal_generated_by_subset {S : set A} {I : set A} [is_ideal I] (H : S ⊆ I) : ideal_generated_by S ⊆ I := begin intro x xiS, induction xiS with a ains a b aiS biS aI bI r a aiS aI, {exact H ains}, {exact zero_mem}, {exact add_mem aI bI}, exact mul_arb_mem r aI end theorem ideal_generated_by_eq {S : set A} {I : set A} [is_ideal I] (SsubI : S ⊆ I) (H : ∀ J, is_ideal J → S ⊆ J → I ⊆ J) : ideal_generated_by S = I := eq_of_subset_of_subset (ideal_generated_by_subset SsubI) (H _ _ (subset_ideal_generated_by S)) theorem ideal_generated_by_eq_of_is_ideal {S : set A} [is_ideal S] : ideal_generated_by S = S := ideal_generated_by_eq (subset.refl _) (λ J iJ sJ, sJ) definition principal_ideal (a : A) : set A := ideal_generated_by '{a} theorem mem_principal_ideal (a : A) : a ∈ principal_ideal a := subset_ideal_generated_by _ (mem_singleton a) theorem is_ideal_principal_ideal [instance] (a : A) : is_ideal (principal_ideal a) := is_ideal_ideal_generated_by _ theorem principal_ideal_eq (a : A) : principal_ideal a = {b | ∃ r, b = r * a} := have is_ideal {b | ∃ r, b = r * a}, from is_ideal.mk (exists.intro 0 (by simp)) (λ x xmem y ymem, obtain r xeq, from xmem, obtain s yeq, from ymem, exists.intro (r + s) (by rewrite [xeq, yeq, right_distrib])) (λ x y ymem, obtain r yeq, from ymem, exists.intro (x * r) (by rewrite [yeq, mul.assoc])), ideal_generated_by_eq (singleton_subset_of_mem (exists.intro 1 (by simp))) (take J, suppose is_ideal J, suppose '{a} ⊆ J, have a ∈ J, from mem_of_singleton_subset this, show {b | ∃ r, b = r * a} ⊆ J, from take b, suppose ∃ r, b = r * a, obtain r beq, from this, show b ∈ J, by rewrite beq; exact mul_arb_mem r `a ∈ J`) theorem ideal_generated_by_union_eq (S T: set A) : ideal_generated_by (S ∪ T) = ideal_generated_by S + ideal_generated_by T := -- TODO: why are these needed? have is_ideal (ideal_generated_by S + ideal_generated_by T), from is_ideal_set_add _ _, have is_add_subgroup (ideal_generated_by T), from is_add_subgroup_of_is_ideal _, have is_zero_closed (ideal_generated_by T), from is_add_subgroup.to_is_zero_closed _, have is_add_subgroup (ideal_generated_by S), from is_add_subgroup_of_is_ideal _, have is_zero_closed (ideal_generated_by S), from is_add_subgroup.to_is_zero_closed _, ideal_generated_by_eq (union_subset (subset.trans (subset_ideal_generated_by S) (subset_set_add_right _ _)) (subset.trans (subset_ideal_generated_by T) (subset_set_add_left _ _))) (take J, assume idealJ, assume JsubST, set_add_subset_of_is_ideal (ideal_generated_by_subset (subset.trans (subset_union_left _ _) JsubST)) (ideal_generated_by_subset (subset.trans (subset_union_right _ _) JsubST))) lemma ideal_generated_by_union_singleton (I : set A) [is_ideal I] (a : A) : ideal_generated_by (I ∪ '{a}) = {b | ∃₀ y ∈ I, ∃ z, b = y + z * a} := begin rewrite [ideal_generated_by_union_eq, ideal_generated_by_eq_of_is_ideal], xrewrite [principal_ideal_eq], show I + {b | ∃ r, b = r * a} = {b | ∃ x, x ∈ I ∧ ∃ z, b = x + z * a}, from set.ext (take y, iff.intro (assume ymem, obtain x [xI [b [[r beq] xeq]]], from ymem, exists.intro x (and.intro xI (exists.intro r (by rewrite [xeq, beq])))) (assume ymem, obtain x [xI [z beq]], from ymem, mem_set_add xI (exists.intro z rfl) beq)) end theorem exists_mul_eq_one_of_two_ideals (H : ∀ I : set A, is_ideal I → I = univ ∨ I = '{0}) {x : A} (H1 : x ≠ 0) : ∃ y, x * y = 1 := or.elim (H (principal_ideal x) _) (suppose principal_ideal x = univ, have 1 ∈ principal_ideal x, by rewrite this; apply mem_univ, have ∃r, 1 = r*x, by rewrite [principal_ideal_eq x at this]; apply this, obtain r oneeq, from this, exists.intro r (by rewrite [oneeq, mul.comm])) (suppose principal_ideal x = '{0}, have x ∈ '{0}, by rewrite -this; apply mem_principal_ideal x, have x = 0, from eq_of_mem_singleton this, absurd this H1) theorem principal_ideal_subset {I : set A} [is_ideal I] {a : A} (aI : a ∈ I) : principal_ideal a ⊆ I := take x, suppose x ∈ principal_ideal a, have ∃ r, x = r * a, by rewrite [principal_ideal_eq at this]; apply this, obtain r xeq, from this, show x ∈ I, by rewrite xeq; apply mul_arb_mem r aI theorem exists_mem_and_ne_zero_of_is_ideal {I : set A} [is_ideal I] (H : I ≠ '{0}) : ∃ y, y ∈ I ∧ y ≠ 0 := have '{0} ⊆ I, from singleton_subset zero_mem, have ∃y , (y ∈ I ∧ y ∉ '{0}), from exists_mem_and_not_mem_of_ne_of_subset (ne.symm H) this, obtain y [yI ynmem], from this, exists.intro y (and.intro yI (assume yeq, ynmem (mem_singleton_of_eq yeq))) theorem eq_univ_of_is_ideal_of_one_mem {I : set A} [is_ideal I] (H : 1 ∈ I) : I = univ := eq_univ_of_forall (take x, by rewrite -mul_one; apply mul_arb_mem _ H) theorem eq_univ_or_eq_singleton_zero_of_is_ideal (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) {I : set A} [is_ideal I] : I = univ ∨ I = '{0} := by_cases (suppose I = '{0}, or.inr this) (suppose I ≠ '{0}, obtain x [xI xne0], from exists_mem_and_ne_zero_of_is_ideal this, obtain y (xyeq : x * y = 1), from H x xne0, have 1 ∈ I, by rewrite -xyeq; exact mul_arb_mem' xI _, have I = univ, from eq_univ_of_is_ideal_of_one_mem this, or.inl this) -- TODO: move private definition inhabited_of_has_zero [instance] : inhabited A := inhabited.mk 0 noncomputable private definition classical_inv (x : A) : A := if H : x = 0 then 0 else epsilon (λ y, x * y = 1) private theorem mul_classical_inv (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) (x : A) (H' : x ≠ 0) : x * (classical_inv x) = 1 := by rewrite [↑classical_inv, dif_neg H']; apply epsilon_spec (H x H') private theorem classical_inv_mul (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) (x : A) (H' : x ≠ 0) : (classical_inv x) * x = 1 := by rewrite [mul.comm, mul_classical_inv H x H'] private theorem classical_inv_zero : classical_inv (0 : A) = 0 := by rewrite [↑classical_inv, dif_pos rfl] noncomputable definition discrete_field_of_comm_ring (H : ∀ x : A , x ≠ 0 → ∃ y, x * y = 1) (H' : 0 ≠ 1) : discrete_field A := ⦃ discrete_field, (_ : comm_ring A), inv := classical_inv, zero_ne_one := H', inv_mul_cancel := classical_inv_mul H, mul_inv_cancel := mul_classical_inv H, has_decidable_eq := _, inv_zero := classical_inv_zero ⦄ end /- quotient ring -/ namespace quotient_ring variables {A : Type} [comm_ring A] (K : set A) [is_ideal K] local notation a `~` b := b - a ∈ K private lemma rel_rfl (a : A) : a ~ a := by rewrite sub_self; apply zero_mem private lemma rel_symm (a b : A) (H : a ~ b) : b ~ a := mem_of_neg_mem (by rewrite neg_sub; apply H) private lemma rel_trans (a b c : A) (H₁ : a ~ b) (H₂ : b ~ c) : a ~ c := have c - a = (c - b) + (b - a), by simp, show c - a ∈ K, by rewrite this; exact add_mem H₂ H₁ private lemma add_well_defined {a1 a2 b1 b2 : A} (H1 : a1 ~ b1) (H2 : a2 ~ b2) : a1 + a2 ~ b1 + b2 := have (b1 + b2) - (a1 + a2) = (b1 - a1) + (b2 - a2), by simp, by rewrite this; apply add_mem H1 H2 private lemma neg_well_defined {a b : A} (H : a ~ b) : (-a ~ -b) := mem_of_neg_mem (by rewrite [neg_neg_sub_neg]; apply H) private lemma mul_well_defined {a1 a2 b1 b2 : A} (H1 : a1 ~ b1) (H2 : a2 ~ b2) : a1 * a2 ~ b1 * b2 := have b1 * b2 - a1 * a2 = (b1 - a1) * b2 + a1 * (b2 - a2), by rewrite [mul_sub_right_distrib, mul_sub_left_distrib, *sub_eq_add_neg, add.assoc, neg_add_cancel_left], begin rewrite this, apply add_mem, {exact mul_arb_mem' H1 _}, exact mul_arb_mem _ H2 end definition quotient_ring_setoid : setoid A := setoid.mk (λ a b, b - a ∈ K) (mk_equivalence _ (rel_rfl K) (rel_symm K) (rel_trans K)) local attribute quotient_ring_setoid [instance] definition quotient [reducible] : Type := quot (quotient_ring_setoid K) definition qproj (a : A) : quotient K := @quot.mk A (quotient_ring_setoid K) a infix ` / ` := λ (A' : Type) [comm_ring A'] K' [is_ideal K'], quotient K' infix ` '+ `:65 := λ {A' : Type} [comm_ring A'] a K' [is_ideal K'], qproj K' a variable {K} theorem qproj_eq_qproj {a b : A} (H : b - a ∈ K) : a '+ K = b '+ K := quot.sound H theorem sub_mem_of_qproj_eq_qproj {a b : A} (H : a '+ K = b '+ K) : b - a ∈ K := quot.exact H theorem qproj_eq_qproj_iff (a b : A) : a '+ K = b '+ K ↔ b - a ∈ K := iff.intro sub_mem_of_qproj_eq_qproj qproj_eq_qproj -- TODO: replace in group.quotient as well proposition quotient_induction {P : A / K → Prop} (h : ∀ a, P (a '+ K)) : ∀ a, P a := take a, quot.induction_on a h proposition quotient_induction_on {P : A / K → Prop} (a : A / K) (h : ∀ a, P (a '+ K)) : P a := quot.induction_on a h proposition quotient_induction₂ {P : A / K → A / K → Prop} (h : ∀ a₁ a₂, P (a₁ '+ K) (a₂ '+ K)) : ∀ a₁ a₂, P a₁ a₂ := take a₁ a₂, quot.induction_on₂ a₁ a₂ h proposition quotient_induction_on₂ {P : A / K → A / K → Prop} (a₁ a₂ : A / K) (h : ∀ a₁ a₂, P (a₁ '+ K) (a₂ '+ K)) : P a₁ a₂ := quot.induction_on₂ a₁ a₂ h proposition exists_eq_qproj : ∀ a : A / K, ∃ a', a = a' '+ K := quotient_induction (λ a, exists.intro _ rfl) private definition qadd : A / K → A / K → A / K := quot.lift₂ (λ a b, (a + b) '+ K) (take a₁ a₂ b₁ b₂, assume Ha : a₁ ~ b₁, assume Hb : a₂ ~ b₂, quot.sound (add_well_defined K Ha Hb)) private definition qmul : A / K → A / K → A / K := quot.lift₂ (λ a b, (a * b) '+ K) (take a₁ a₂ b₁ b₂, assume Ha : a₁ ~ b₁, assume Hb : a₂ ~ b₂, quot.sound (mul_well_defined K Ha Hb)) private definition qzero : A / K := 0 '+ K private definition qone : A / K := 1 '+ K private lemma qproj_eq_qproj_of_eq {a b : A} (H : a = b) : (a '+ K) = (b '+ K) := by rewrite H private theorem qadd_comm (a b : A / K) : qadd a b = qadd b a := quot.induction_on₂ a b (take a b, qproj_eq_qproj_of_eq (add.comm a b)) private theorem qadd_assoc (a b c : A / K) : qadd (qadd a b) c = qadd a (qadd b c) := quot.induction_on₃ a b c (take a b c, qproj_eq_qproj_of_eq (add.assoc a b c)) private definition qneg : A / K → A / K := quot.lift (λ a , (-a) '+ K) (take a1 a2, assume Ha : a1 ~ a2, quot.sound (neg_well_defined K Ha)) private theorem qadd_left_inverse (a : A/ K) : qadd (qneg a) a = qzero := quot.induction_on a (take a, qproj_eq_qproj_of_eq (add.left_inv a)) private theorem zero_qadd (a : A / K) : qadd qzero a = a := quot.induction_on a (take a, qproj_eq_qproj_of_eq (zero_add a)) private theorem qadd_zero (a : A / K) : qadd a qzero = a := quot.induction_on a (take a, qproj_eq_qproj_of_eq (add_zero a)) private theorem qmul_comm (a b : A / K) : qmul a b = qmul b a := quot.induction_on₂ a b (take a b, qproj_eq_qproj_of_eq (mul.comm a b)) private theorem qmul_assoc (a b c : A / K) : qmul (qmul a b) c = qmul a (qmul b c) := quot.induction_on₃ a b c (take a b c, qproj_eq_qproj_of_eq (mul.assoc a b c)) private theorem one_qmul (a : A / K) : qmul qone a = a := quot.induction_on a (take a, qproj_eq_qproj_of_eq (one_mul a)) private theorem qmul_one (a : A / K) : qmul a qone = a := quot.induction_on a (take a, qproj_eq_qproj_of_eq (mul_one a)) private theorem left_distrib (a b c : A/K) : qmul a (qadd b c)= qadd (qmul a b) (qmul a c) := quot.induction_on₃ a b c (take a b c, qproj_eq_qproj_of_eq (left_distrib a b c)) private theorem right_distrib (a b c : A/K) : qmul (qadd a b) c = qadd (qmul a c) (qmul b c) := quot.induction_on₃ a b c (take a b c, qproj_eq_qproj_of_eq (right_distrib a b c)) private theorem qadd_comm (a b : A / K) : qadd a b = qadd b a := quot.induction_on b (quot.induction_on a (take a b, have (b + a) - (a + b) = 0, by simp, have (b + a) - (a + b) ∈ K, by rewrite this; exact zero_mem, quot.sound this)) protected definition to_ring [instance] : comm_ring (quotient K) := ⦃ comm_ring, add := qadd, add_assoc := qadd_assoc, zero := qzero, zero_add := zero_qadd, add_zero := qadd_zero, neg := qneg, add_left_inv := qadd_left_inverse, add_comm := qadd_comm, mul := qmul, mul_assoc := qmul_assoc, one := qone, one_mul := one_qmul, mul_one := qmul_one, left_distrib := left_distrib, right_distrib := right_distrib, mul_comm := qmul_comm ⦄ variable (K) theorem qproj_zero : 0 '+ K = 0 := rfl theorem qproj_one : 1 '+ K = 1 := rfl variable {K} theorem qproj_eq_zero_iff (a : A) : a '+ K = 0 ↔ a ∈ K := by krewrite [qproj_eq_qproj_iff, sub_mem_iff, sub_zero] theorem mem_of_qproj_eq_zero {a : A} (H : a '+ K = 0 '+ K) : a ∈ K := iff.mp (qproj_eq_zero_iff a) H theorem qproj_eq_zero {a : A} (H : a ∈ K) : a '+ K = 0 := iff.mpr (qproj_eq_zero_iff a) H end quotient_ring /- prime and maximal ideals -/ section variables {A : Type} [comm_ring A] open quotient_ring structure is_prime_ideal [class] (I : set A) extends is_ideal I : Prop := (is_prime : ∀ ⦃a b⦄, a * b ∈ I → a ∈ I ∨ b ∈ I) (nontrivial : I ≠ univ) structure is_maximal_ideal [class] (I : set A) extends is_ideal I : Prop := (is_maximal : ∀ ⦃J : set A⦄, is_ideal J → J ⊇ I → J = I ∨ J = univ) (nontrivial : I ≠ univ) theorem mem_or_mem_of_is_prime {I : set A} [is_prime_ideal I] {a b : A} (H : a * b ∈ I) : a ∈ I ∨ b ∈ I := is_prime_ideal.is_prime H theorem ne_univ_of_is_prime (I : set A) [is_prime_ideal I] : I ≠ univ := @is_prime_ideal.nontrivial _ _ I _ theorem is_maximal {I : set A} [is_maximal_ideal I] {J : set A} [idealJ : is_ideal J] (H : J ⊇ I) : J = I ∨ J = univ := is_maximal_ideal.is_maximal idealJ H theorem qproj_eq_zero_or_qproj_eq_zero_of_is_prime_ideal {I : set A} [is_prime_ideal I] (a b : A) (H : (a '+ I) * (b '+ I) = 0) : a '+ I = 0 ∨ b '+ I = 0 := begin rewrite [+qproj_eq_zero_iff], apply mem_or_mem_of_is_prime, apply mem_of_qproj_eq_zero, exact H end theorem is_prime_ideal_of_forall {I : set A} [is_ideal I] (H : ∀ a b, (a '+ I) * (b '+ I) = 0 → a '+ I = 0 ∨ b '+ I = 0) (H' : I ≠ univ) : is_prime_ideal I := ⦃ is_prime_ideal, (_ : is_ideal I), is_prime := begin intro a b abI, rewrite [-+qproj_eq_zero_iff], apply H, exact qproj_eq_zero abI end, nontrivial := H' ⦄ theorem exists_qproj_mul_qproj_eq_one_of_is_maximal {I : set A} [is_maximal_ideal I] {a : A} (H : a '+ I ≠ 0) : ∃ y, (a '+ I) * (y '+ I) = 1 := have ideal_generated_by (I ∪ '{a}) ≠ I, from assume otherwise, have a ∈ ideal_generated_by (I ∪ '{a}), from subset_ideal_generated_by _ (mem_unionr (mem_singleton _)), have a ∉ I, from λ H', H (qproj_eq_zero H'), show false, begin apply this, rewrite -otherwise, assumption end, have ideal_generated_by (I ∪ '{a}) = univ, from or.resolve_left (is_maximal (subset.trans (subset_union_left _ _) (subset_ideal_generated_by _))) this, have 1 ∈ {b | ∃₀ y ∈ I, ∃ z, b = y + z * a}, by rewrite [-ideal_generated_by_union_singleton, this]; apply mem_univ, obtain y [yI [z (oneeq : 1 = y + z * a)]], from this, exists.intro z (qproj_eq_qproj (show 1 - a * z ∈ I, by rewrite [oneeq, mul.comm, add_sub_cancel]; exact yI)) theorem is_maximal_ideal_of_forall {I : set A} [is_ideal I] (H : ∀ a, a '+ I ≠ 0 → ∃ y, (a '+ I) * (y '+ I) = 1) (H' : I ≠ univ) : is_maximal_ideal I := ⦃ is_maximal_ideal, (_ : is_ideal I), is_maximal := take J, suppose is_ideal J, suppose J ⊇ I, by_cases (suppose J = I, or.inl this) (suppose J ≠ I, obtain a [aJ anI], from exists_mem_and_not_mem_of_ne_of_subset (ne.symm this) `J ⊇ I`, have a '+ I ≠ 0, from λ H', anI (mem_of_qproj_eq_zero H'), obtain y (Hy : (a '+ I) * (y '+ I) = 1), from H _ this, have 1 - a * y ∈ I, from sub_mem_of_qproj_eq_qproj Hy, have 1 - a * y + a * y ∈ J, from add_mem (`J ⊇ I` this) (mul_arb_mem' aJ _), have 1 ∈ J, by rewrite [sub_add_cancel at this]; exact this, show J = I ∨ J = univ, from or.inr (eq_univ_of_is_ideal_of_one_mem this)), nontrivial := H' ⦄ definition integral_domain_quotient_of_is_prime_ideal [instance] (I : set A) [is_prime_ideal I] : integral_domain (A / I) := have H : ∀ a b : A / I, a * b = 0 → a = 0 ∨ b = 0, from quotient_induction₂ qproj_eq_zero_or_qproj_eq_zero_of_is_prime_ideal, have H' : (0 : A / I) ≠ 1, from assume otherwise, have 1 - 0 ∈ I, from sub_mem_of_qproj_eq_qproj otherwise, have I = univ, from eq_univ_of_is_ideal_of_one_mem (by rewrite [sub_zero at this]; exact this), show false, from is_prime_ideal.nontrivial _ I this, ⦃ integral_domain, (_ : comm_ring (A / I)), eq_zero_or_eq_zero_of_mul_eq_zero := H, zero_ne_one := H' ⦄ theorem is_prime_ideal_of_forall_quotient {I : set A} [is_ideal I] (H : ∀ a b : A / I, a * b = 0 → a = 0 ∨ b = 0) (H' : I ≠ univ) : is_prime_ideal I := is_prime_ideal_of_forall (λ a b, H _ _) H' noncomputable definition discrete_field_quotient_of_is_maximal_ideal [instance] (I : set A) [is_maximal_ideal I] : discrete_field (A / I) := have H : ∀ x : A / I, x ≠ 0 → ∃ y, x * y = 1, from quotient_induction (take a, assume anz, obtain y Hy, from exists_qproj_mul_qproj_eq_one_of_is_maximal anz, exists.intro (y '+ I) Hy), have H' : (0 : A / I) ≠ 1, from assume otherwise, have 1 - 0 ∈ I, from sub_mem_of_qproj_eq_qproj otherwise, have I = univ, from eq_univ_of_is_ideal_of_one_mem (by rewrite [sub_zero at this]; exact this), show false, from is_maximal_ideal.nontrivial _ I this, discrete_field_of_comm_ring H H' theorem is_maximal_ideal_of_forall_quotient {I : set A} [is_ideal I] (H : ∀ a : A / I, a ≠ 0 → ∃ b, a * b = 1) (H' : I ≠ univ) : is_maximal_ideal I := is_maximal_ideal_of_forall (λ a aIne0, obtain b Hb, from H _ aIne0, obtain b' (beq : b = b' '+ I), from exists_eq_qproj b, exists.intro b' (by rewrite -beq; exact Hb)) H' theorem is_prime_ideal_of_is_maximal_ideal [instance] {I : set A} [is_maximal_ideal I] : is_prime_ideal I := is_prime_ideal_of_forall_quotient (@eq_zero_or_eq_zero_of_mul_eq_zero _ _) (is_maximal_ideal.nontrivial _ I) end