/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Haitao Zhang, Leonardo de Moura Finite ordinal types. -/ import data.list.basic data.finset.basic data.fintype.card algebra.group data.equiv open eq.ops nat function list finset fintype structure fin (n : nat) := (val : nat) (is_lt : val < n) definition less_than [reducible] := fin namespace fin attribute fin.val [coercion] section def_equal variable {n : nat} lemma eq_of_veq : ∀ {i j : fin n}, (val i) = j → i = j | (mk iv ilt) (mk jv jlt) := assume (veq : iv = jv), begin congruence, assumption end lemma veq_of_eq : ∀ {i j : fin n}, i = j → (val i) = j | (mk iv ilt) (mk jv jlt) := assume Peq, show iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe) lemma eq_iff_veq {i j : fin n} : (val i) = j ↔ i = j := iff.intro eq_of_veq veq_of_eq definition val_inj := @eq_of_veq n end def_equal section open decidable protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j) | (mk ival ilt) (mk jval jlt) := decidable_of_decidable_of_iff (nat.has_decidable_eq ival jval) eq_iff_veq end lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe) lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl definition upto [reducible] (n : nat) : list (fin n) := dmap (λ i, i < n) fin.mk (list.upto n) lemma nodup_upto (n : nat) : nodup (upto n) := dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n) lemma mem_upto (n : nat) : ∀ (i : fin n), i ∈ upto n := take i, fin.destruct i (take ival Piltn, assert ival ∈ list.upto n, from mem_upto_of_lt Piltn, mem_dmap Piltn this) lemma upto_zero : upto 0 = [] := by rewrite [↑upto, list.upto_nil, dmap_nil] lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n := map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n) lemma length_upto (n : nat) : length (upto n) = n := calc length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹ ... = n : list.length_upto n definition is_fintype [instance] (n : nat) : fintype (fin n) := fintype.mk (upto n) (nodup_upto n) (mem_upto n) section pigeonhole open fintype lemma card_fin (n : nat) : card (fin n) = n := length_upto n theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬∃ f : fin n → fin m, injective f := assume Pex, absurd Pmltn (not_lt_of_ge (calc n = card (fin n) : card_fin ... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex ... = m : card_fin)) end pigeonhole protected definition zero (n : nat) : fin (succ n) := mk 0 !zero_lt_succ definition fin_has_zero [instance] (n : nat) : has_zero (fin (succ n)) := has_zero.mk (fin.zero n) theorem val_zero (n : nat) : val (0 : fin (succ n)) = 0 := rfl definition mk_mod [reducible] (n i : nat) : fin (succ n) := mk (i % (succ n)) (mod_lt _ !zero_lt_succ) theorem mk_mod_zero_eq (n : nat) : mk_mod n 0 = 0 := rfl variable {n : nat} theorem val_lt : ∀ i : fin n, val i < n | (mk v h) := h lemma max_lt (i j : fin n) : max i j < n := max_lt (is_lt i) (is_lt j) definition lift : fin n → Π m : nat, fin (n + m) | (mk v h) m := mk v (lt_add_of_lt_right h m) definition lift_succ (i : fin n) : fin (nat.succ n) := have r : fin (n+1), from lift i 1, r definition maxi [reducible] : fin (succ n) := mk n !lt_succ_self theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m) | (mk v h) m := rfl lemma mk_succ_ne_zero {i : nat} : ∀ {P}, mk (succ i) P ≠ (0 : fin (succ n)) := assume P Pe, absurd (veq_of_eq Pe) !succ_ne_zero lemma mk_mod_eq {i : fin (succ n)} : i = mk_mod n i := eq_of_veq begin rewrite [↑mk_mod, mod_eq_of_lt !is_lt] end lemma mk_mod_of_lt {i : nat} (Plt : i < succ n) : mk_mod n i = mk i Plt := begin esimp [mk_mod], congruence, exact mod_eq_of_lt Plt end section lift_lower lemma lift_zero : lift_succ (0 : fin (succ n)) = (0 : fin (succ (succ n))) := rfl lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi := by intro hlt he; substvars; exact absurd hlt (lt.irrefl n) lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n := assume hne : i ≠ maxi, assert vne : val i ≠ n, from assume he, have val (@maxi n) = n, from rfl, have val i = val (@maxi n), from he ⬝ this⁻¹, absurd (eq_of_veq this) hne, have val i < nat.succ n, from val_lt i, lt_of_le_of_ne (le_of_lt_succ this) vne lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi := begin cases i with v hlt, esimp [lift_succ, lift, max], intro he, injection he, substvars, exact absurd hlt (lt.irrefl v) end lemma lift_succ_inj : injective (@lift_succ n) := take i j, destruct i (destruct j (take iv ilt jv jlt Pmkeq, begin congruence, apply fin.no_confusion Pmkeq, intros, assumption end)) lemma lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) : injective f → (f maxi = maxi) → ∀ i : fin (succ n), i < n → f i < n := assume Pinj Peq, take i, assume Pilt, assert P1 : f i = f maxi → i = maxi, from assume Peq, Pinj i maxi Peq, have f i ≠ maxi, from begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end, lt_max_of_ne_max this definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) := λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne)))) definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : injective f) : f maxi = maxi → fin n → fin n := assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max)) lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi := begin rewrite [↑lift_fun, dif_pos rfl] end lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) : lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) := begin rewrite [↑lift_fun, dif_neg Pne] end lemma lift_fun_eq {f : fin n → fin n} {i : fin n} : lift_fun f (lift_succ i) = lift_succ (f i) := begin rewrite [lift_fun_of_ne_max lift_succ_ne_max], congruence, congruence, rewrite [-eq_iff_veq], esimp, rewrite [↑lift_succ, -val_lift] end lemma lift_fun_of_inj {f : fin n → fin n} : injective f → injective (lift_fun f) := assume Pinj, take i j, assert Pdi : decidable (i = maxi), from _, assert Pdj : decidable (j = maxi), from _, begin cases Pdi with Pimax Pinmax, cases Pdj with Pjmax Pjnmax, substvars, intros, exact rfl, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax], intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max, cases Pdj with Pjmax Pjnmax, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax], intro Plmax, apply absurd Plmax lift_succ_ne_max, rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax], intro Peq, rewrite [-eq_iff_veq], exact veq_of_eq (Pinj (lift_succ_inj Peq)) end lemma lift_fun_inj : injective (@lift_fun n) := take f₁ f₂ Peq, funext (λ i, assert lift_fun f₁ (lift_succ i) = lift_fun f₂ (lift_succ i), from congr_fun Peq _, begin revert this, rewrite [*lift_fun_eq], apply lift_succ_inj end) lemma lower_inj_apply {f Pinj Pmax} (i : fin n) : val (lower_inj f Pinj Pmax i) = val (f (lift_succ i)) := by rewrite [↑lower_inj] end lift_lower section madd definition madd (i j : fin (succ n)) : fin (succ n) := mk ((i + j) % (succ n)) (mod_lt _ !zero_lt_succ) definition minv : ∀ i : fin (succ n), fin (succ n) | (mk iv ilt) := mk ((succ n - iv) % succ n) (mod_lt _ !zero_lt_succ) lemma val_madd : ∀ i j : fin (succ n), val (madd i j) = (i + j) % (succ n) | (mk iv ilt) (mk jv jlt) := by esimp lemma madd_inj : ∀ {i : fin (succ n)}, injective (madd i) | (mk iv ilt) := take j₁ j₂, fin.destruct j₁ (fin.destruct j₂ (λ jv₁ jlt₁ jv₂ jlt₂, begin rewrite [↑madd, -eq_iff_veq], intro Peq, congruence, rewrite [-(mod_eq_of_lt jlt₁), -(mod_eq_of_lt jlt₂)], apply mod_eq_mod_of_add_mod_eq_add_mod_left Peq end)) lemma madd_mk_mod {i j : nat} : madd (mk_mod n i) (mk_mod n j) = mk_mod n (i+j) := eq_of_veq begin esimp [madd, mk_mod], rewrite [ mod_add_mod, add_mod_mod ] end lemma val_mod : ∀ i : fin (succ n), (val i) % (succ n) = val i | (mk iv ilt) := by esimp; rewrite [(mod_eq_of_lt ilt)] lemma madd_comm (i j : fin (succ n)) : madd i j = madd j i := by apply eq_of_veq; rewrite [*val_madd, add.comm (val i)] lemma zero_madd (i : fin (succ n)) : madd 0 i = i := have H : madd (fin.zero n) i = i, by apply eq_of_veq; rewrite [val_madd, ↑fin.zero, nat.zero_add, mod_eq_of_lt (is_lt i)], H lemma madd_zero (i : fin (succ n)) : madd i (fin.zero n) = i := !madd_comm ▸ zero_madd i lemma madd_assoc (i j k : fin (succ n)) : madd (madd i j) k = madd i (madd j k) := by apply eq_of_veq; rewrite [*val_madd, mod_add_mod, add_mod_mod, add.assoc (val i)] lemma madd_left_inv : ∀ i : fin (succ n), madd (minv i) i = fin.zero n | (mk iv ilt) := eq_of_veq (by rewrite [val_madd, ↑minv, ↑fin.zero, mod_add_mod, nat.sub_add_cancel (le_of_lt ilt), mod_self]) definition madd_is_comm_group [instance] : add_comm_group (fin (succ n)) := add_comm_group.mk madd madd_assoc (fin.zero n) zero_madd madd_zero minv madd_left_inv madd_comm end madd definition pred : fin n → fin n | (mk v h) := mk (nat.pred v) (pre_lt_of_lt h) lemma val_pred : ∀ (i : fin n), val (pred i) = nat.pred (val i) | (mk v h) := rfl lemma pred_zero : pred (fin.zero n) = fin.zero n := rfl definition mk_pred (i : nat) (h : succ i < succ n) : fin n := mk i (lt_of_succ_lt_succ h) definition succ : fin n → fin (succ n) | (mk v h) := mk (nat.succ v) (succ_lt_succ h) lemma val_succ : ∀ (i : fin n), val (succ i) = nat.succ (val i) | (mk v h) := rfl lemma succ_max : fin.succ maxi = (@maxi (nat.succ n)) := rfl lemma lift_succ.comm : lift_succ ∘ (@succ n) = succ ∘ lift_succ := funext take i, eq_of_veq (begin rewrite [↑lift_succ, -val_lift, *val_succ, -val_lift] end) definition elim0 {C : fin 0 → Type} : Π i : fin 0, C i | (mk v h) := absurd h !not_lt_zero definition zero_succ_cases {C : fin (nat.succ n) → Type} : C (fin.zero n) → (Π j : fin n, C (succ j)) → (Π k : fin (nat.succ n), C k) := begin intros CO CS k, induction k with [vk, pk], induction (nat.decidable_lt 0 vk) with [HT, HF], { show C (mk vk pk), from let vj := nat.pred vk in have vk = vj+1, from eq.symm (succ_pred_of_pos HT), assert vj < n, from lt_of_succ_lt_succ (eq.subst `vk = vj+1` pk), have succ (mk vj `vj < n`) = mk vk pk, from val_inj (eq.symm `vk = vj+1`), eq.rec_on this (CS (mk vj `vj < n`)) }, { show C (mk vk pk), from have vk = 0, from eq_zero_of_le_zero (le_of_not_gt HF), have fin.zero n = mk vk pk, from val_inj (eq.symm this), eq.rec_on this CO } end definition succ_maxi_cases {C : fin (nat.succ n) → Type} : (Π j : fin n, C (lift_succ j)) → C maxi → (Π k : fin (nat.succ n), C k) := begin intros CL CM k, induction k with [vk, pk], induction (nat.decidable_lt vk n) with [HT, HF], { show C (mk vk pk), from have HL : lift_succ (mk vk HT) = mk vk pk, from val_inj rfl, eq.rec_on HL (CL (mk vk HT)) }, { show C (mk vk pk), from have HMv : vk = n, from le.antisymm (le_of_lt_succ pk) (le_of_not_gt HF), have HM : maxi = mk vk pk, from val_inj (eq.symm HMv), eq.rec_on HM CM } end definition foldr {A B : Type} (m : A → B → B) (b : B) : ∀ {n : nat}, (fin n → A) → B := nat.rec (λ f, b) (λ n IH f, m (f (fin.zero n)) (IH (λ i : fin n, f (succ i)))) definition foldl {A B : Type} (m : B → A → B) (b : B) : ∀ {n : nat}, (fin n → A) → B := nat.rec (λ f, b) (λ n IH f, m (IH (λ i : fin n, f (lift_succ i))) (f maxi)) theorem choice {C : fin n → Type} : (∀ i : fin n, nonempty (C i)) → nonempty (Π i : fin n, C i) := begin revert C, induction n with [n, IH], { intros C H, apply nonempty.intro, exact elim0 }, { intros C H, fapply nonempty.elim (H (fin.zero n)), intro CO, fapply nonempty.elim (IH (λ i, C (succ i)) (λ i, H (succ i))), intro CS, apply nonempty.intro, exact zero_succ_cases CO CS } end section open list local postfix `+1`:100 := nat.succ lemma dmap_map_lift {n : nat} : ∀ l : list nat, (∀ i, i ∈ l → i < n) → dmap (λ i, i < n +1) mk l = map lift_succ (dmap (λ i, i < n) mk l) | [] := assume Plt, rfl | (i::l) := assume Plt, begin rewrite [@dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (lt_succ_of_lt (Plt i !mem_cons)), @dmap_cons_of_pos _ _ (λ i, i < n) _ _ _ (Plt i !mem_cons), map_cons], congruence, apply dmap_map_lift, intro j Pjinl, apply Plt, apply mem_cons_of_mem, assumption end lemma upto_succ (n : nat) : upto (n +1) = maxi :: map lift_succ (upto n) := begin rewrite [↑fin.upto, list.upto_succ, @dmap_cons_of_pos _ _ (λ i, i < n +1) _ _ _ (nat.self_lt_succ n)], congruence, apply dmap_map_lift, apply @list.lt_of_mem_upto end definition upto_step : ∀ {n : nat}, fin.upto (n +1) = (map succ (upto n))++[0] | 0 := rfl | (i +1) := begin rewrite [upto_succ i, map_cons, append_cons, succ_max, upto_succ, -lift_zero], congruence, rewrite [map_map, -lift_succ.comm, -map_map, -(map_singleton _ 0), -map_append, -upto_step] end end open sum equiv decidable definition fin_zero_equiv_empty : fin 0 ≃ empty := ⦃ equiv, to_fun := λ f : (fin 0), elim0 f, inv_fun := λ e : empty, empty.rec _ e, left_inv := λ f : (fin 0), elim0 f, right_inv := λ e : empty, empty.rec _ e ⦄ definition fin_one_equiv_unit : fin 1 ≃ unit := ⦃ equiv, to_fun := λ f : (fin 1), unit.star, inv_fun := λ u : unit, fin.zero 0, left_inv := begin intro f, change mk 0 !zero_lt_succ = f, cases f with v h, congruence, have v +1 ≤ 1, from succ_le_of_lt h, have v ≤ 0, from le_of_succ_le_succ this, have v = 0, from eq_zero_of_le_zero this, subst v end, right_inv := begin intro u, cases u, reflexivity end ⦄ definition fin_sum_equiv (n m : nat) : (fin n + fin m) ≃ fin (n+m) := assert aux₁ : ∀ {v}, v < m → (v + n) < (n + m), from take v, suppose v < m, calc v + n < m + n : add_lt_add_of_lt_of_le this !le.refl ... = n + m : add.comm, ⦃ equiv, to_fun := λ s : sum (fin n) (fin m), match s with | sum.inl (mk v hlt) := mk v (lt_add_of_lt_right hlt m) | sum.inr (mk v hlt) := mk (v+n) (aux₁ hlt) end, inv_fun := λ f : fin (n + m), match f with | mk v hlt := if h : v < n then sum.inl (mk v h) else sum.inr (mk (v-n) (nat.sub_lt_of_lt_add hlt (le_of_not_gt h))) end, left_inv := begin intro s, cases s with f₁ f₂, { cases f₁ with v hlt, esimp, rewrite [dif_pos hlt] }, { cases f₂ with v hlt, esimp, have ¬ v + n < n, from suppose v + n < n, assert v < n - n, from nat.lt_sub_of_add_lt this !le.refl, have v < 0, by rewrite [nat.sub_self at this]; exact this, absurd this !not_lt_zero, rewrite [dif_neg this], congruence, congruence, rewrite [nat.add_sub_cancel] } end, right_inv := begin intro f, cases f with v hlt, esimp, apply @by_cases (v < n), { intro h₁, rewrite [dif_pos h₁] }, { intro h₁, rewrite [dif_neg h₁], esimp, congruence, rewrite [nat.sub_add_cancel (le_of_not_gt h₁)] } end ⦄ definition fin_prod_equiv_of_pos (n m : nat) : n > 0 → (fin n × fin m) ≃ fin (n*m) := suppose n > 0, assert aux₁ : ∀ {v₁ v₂}, v₁ < n → v₂ < m → v₁ + v₂ * n < n*m, from take v₁ v₂, assume h₁ h₂, have nat.succ v₂ ≤ m, from succ_le_of_lt h₂, assert nat.succ v₂ * n ≤ m * n, from mul_le_mul_right _ this, have v₂ * n + n ≤ n * m, by rewrite [-add_one at this, right_distrib at this, one_mul at this, mul.comm m n at this]; exact this, assert v₁ + (v₂ * n + n) < n + n * m, from add_lt_add_of_lt_of_le h₁ this, have v₁ + v₂ * n + n < n * m + n, by rewrite [add.assoc, add.comm (n*m) n]; exact this, lt_of_add_lt_add_right this, assert aux₂ : ∀ v, v % n < n, from take v, mod_lt _ `n > 0`, assert aux₃ : ∀ {v}, v < n * m → v / n < m, from take v, assume h, by rewrite mul.comm at h; exact nat.div_lt_of_lt_mul h, ⦃ equiv, to_fun := λ p : (fin n × fin m), match p with (mk v₁ hlt₁, mk v₂ hlt₂) := mk (v₁ + v₂ * n) (aux₁ hlt₁ hlt₂) end, inv_fun := λ f : fin (n*m), match f with (mk v hlt) := (mk (v % n) (aux₂ v), mk (v / n) (aux₃ hlt)) end, left_inv := begin intro p, cases p with f₁ f₂, cases f₁ with v₁ hlt₁, cases f₂ with v₂ hlt₂, esimp, congruence, {congruence, rewrite [add_mul_mod_self, mod_eq_of_lt hlt₁] }, {congruence, rewrite [add_mul_div_self `n > 0`, div_eq_zero_of_lt hlt₁, zero_add]} end, right_inv := begin intro f, cases f with v hlt, esimp, congruence, rewrite [add.comm, -eq_div_mul_add_mod] end ⦄ definition fin_prod_equiv : Π (n m : nat), (fin n × fin m) ≃ fin (n*m) | 0 b := calc (fin 0 × fin b) ≃ (empty × fin b) : prod_congr fin_zero_equiv_empty !equiv.refl ... ≃ empty : prod_empty_left ... ≃ fin 0 : fin_zero_equiv_empty ... ≃ fin (0 * b) : by rewrite zero_mul | (a+1) b := fin_prod_equiv_of_pos (a+1) b dec_trivial definition fin_two_equiv_bool : fin 2 ≃ bool := calc fin 2 ≃ fin (1 + 1) : equiv.refl ... ≃ fin 1 + fin 1 : fin_sum_equiv ... ≃ unit + unit : sum_congr fin_one_equiv_unit fin_one_equiv_unit ... ≃ bool : bool_equiv_unit_sum_unit definition fin_sum_unit_equiv (n : nat) : fin n + unit ≃ fin (n+1) := calc fin n + unit ≃ fin n + fin 1 : sum_congr !equiv.refl (equiv.symm fin_one_equiv_unit) ... ≃ fin (n+1) : fin_sum_equiv end fin