/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.yoneda Authors: Floris van Doorn -/ --note: modify definition in category.set import algebra.category.constructions .morphism open category eq category.ops functor prod.ops is_trunc set_option pp.beta true namespace yoneda set_option class.conservative false --TODO: why does this take so much steps? (giving more information than "assoc" hardly helps) definition representable_functor_assoc [C : Precategory] {a1 a2 a3 a4 a5 a6 : C} (f1 : hom a5 a6) (f2 : hom a4 a5) (f3 : hom a3 a4) (f4 : hom a2 a3) (f5 : hom a1 a2) : (f1 ∘ f2) ∘ f3 ∘ (f4 ∘ f5) = f1 ∘ (f2 ∘ f3 ∘ f4) ∘ f5 := calc _ = f1 ∘ f2 ∘ f3 ∘ f4 ∘ f5 : assoc ... = f1 ∘ (f2 ∘ f3) ∘ f4 ∘ f5 : assoc ... = f1 ∘ ((f2 ∘ f3) ∘ f4) ∘ f5 : assoc ... = _ : assoc --disturbing behaviour: giving the type of f "(x ⟶ y)" explicitly makes the unifier loop definition representable_functor (C : Precategory) : Cᵒᵖ ×c C ⇒ set := functor.mk (λ(x : Cᵒᵖ ×c C), homset x.1 x.2) (λ(x y : Cᵒᵖ ×c C) (f : _) (h : homset x.1 x.2), f.2 ∘⁅ C ⁆ (h ∘⁅ C ⁆ f.1)) proof (λ(x : Cᵒᵖ ×c C), eq_of_homotopy (λ(h : homset x.1 x.2), !id_left ⬝ !id_right)) qed -- (λ(x y z : Cᵒᵖ ×c C) (g : y ⟶ z) (f : x ⟶ y), eq_of_homotopy (λ(h : hom x.1 x.2), representable_functor_assoc g.2 f.2 h f.1 g.1)) begin intros (x, y, z, g, f), apply eq_of_homotopy, intro h, exact (representable_functor_assoc g.2 f.2 h f.1 g.1), end end yoneda open is_equiv equiv namespace functor open prod nat_trans variables {C D E : Precategory} (F : C ×c D ⇒ E) (G : C ⇒ E ^c D) definition functor_curry_ob [reducible] (c : C) : E ^c D := functor.mk (λd, F (c,d)) (λd d' g, F (id, g)) (λd, !respect_id) (λd₁ d₂ d₃ g' g, proof calc F (id, g' ∘ g) = F (id ∘ id, g' ∘ g) : {(id_compose c)⁻¹} ... = F ((id,g') ∘ (id, g)) : idp ... = F (id,g') ∘ F (id, g) : respect_comp F qed) local abbreviation Fob := @functor_curry_ob definition functor_curry_hom ⦃c c' : C⦄ (f : c ⟶ c') : Fob F c ⟹ Fob F c' := nat_trans.mk (λd, F (f, id)) (λd d' g, proof calc F (id, g) ∘ F (f, id) = F (id ∘ f, g ∘ id) : respect_comp F ... = F (f, g ∘ id) : {id_left f} ... = F (f, g) : {id_right g} ... = F (f ∘ id, g) : {(id_right f)⁻¹} ... = F (f ∘ id, id ∘ g) : {(id_left g)⁻¹} ... = F (f, id) ∘ F (id, g) : (respect_comp F (f, id) (id, g))⁻¹ᵖ qed) local abbreviation Fhom := @functor_curry_hom definition functor_curry_hom_def ⦃c c' : C⦄ (f : c ⟶ c') (d : D) : (Fhom F f) d = homF F (f, id) := idp definition functor_curry_id (c : C) : Fhom F (ID c) = nat_trans.id := nat_trans_eq_mk (λd, respect_id F _) definition functor_curry_comp ⦃c c' c'' : C⦄ (f' : c' ⟶ c'') (f : c ⟶ c') : Fhom F (f' ∘ f) = Fhom F f' ∘n Fhom F f := nat_trans_eq_mk (λd, calc natural_map (Fhom F (f' ∘ f)) d = F (f' ∘ f, id) : functor_curry_hom_def ... = F (f' ∘ f, id ∘ id) : {(id_compose d)⁻¹} ... = F ((f',id) ∘ (f, id)) : idp ... = F (f',id) ∘ F (f, id) : respect_comp F ... = natural_map ((Fhom F f') ∘ (Fhom F f)) d : idp) definition functor_curry [reducible] : C ⇒ E ^c D := functor.mk (functor_curry_ob F) (functor_curry_hom F) (functor_curry_id F) (functor_curry_comp F) definition functor_uncurry_ob [reducible] (p : C ×c D) : E := obF (G p.1) p.2 local abbreviation Gob := @functor_uncurry_ob definition functor_uncurry_hom ⦃p p' : C ×c D⦄ (f : hom p p') : Gob G p ⟶ Gob G p' := homF (obF G p'.1) f.2 ∘ natural_map (homF G f.1) p.2 local abbreviation Ghom := @functor_uncurry_hom definition functor_uncurry_id (p : C ×c D) : Ghom G (ID p) = id := calc Ghom G (ID p) = homF (obF G p.1) id ∘ natural_map (homF G id) p.2 : idp ... = id ∘ natural_map (homF G id) p.2 : ap (λx, x ∘ _) (respect_id (obF G p.1) p.2) ... = id ∘ natural_map nat_trans.id p.2 : {respect_id G p.1} ... = id : id_compose definition functor_uncurry_comp ⦃p p' p'' : C ×c D⦄ (f' : p' ⟶ p'') (f : p ⟶ p') : Ghom G (f' ∘ f) = Ghom G f' ∘ Ghom G f := calc Ghom G (f' ∘ f) = homF (obF G p''.1) (f'.2 ∘ f.2) ∘ natural_map (homF G (f'.1 ∘ f.1)) p.2 : idp ... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2) ∘ natural_map (homF G (f'.1 ∘ f.1)) p.2 : {respect_comp (obF G p''.1) f'.2 f.2} ... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2) ∘ natural_map (homF G f'.1 ∘ homF G f.1) p.2 : {respect_comp G f'.1 f.1} ... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2) ∘ (natural_map (homF G f'.1) p.2 ∘ natural_map (homF G f.1) p.2) : idp ... = (homF (obF G p''.1) f'.2 ∘ homF (obF G p''.1) f.2) ∘ (natural_map (homF G f'.1) p.2 ∘ natural_map (homF G f.1) p.2) : idp ... = (homF (obF G p''.1) f'.2 ∘ natural_map (homF G f'.1) p'.2) ∘ (homF (obF G p'.1) f.2 ∘ natural_map (homF G f.1) p.2) : square_prepostcompose (!naturality⁻¹ᵖ) _ _ ... = Ghom G f' ∘ Ghom G f : idp definition functor_uncurry [reducible] : C ×c D ⇒ E := functor.mk (functor_uncurry_ob G) (functor_uncurry_hom G) (functor_uncurry_id G) (functor_uncurry_comp G) -- open pi -- definition functor_eq_mk'1 {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} -- {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) -- (pF : F₁ = F₂) (pH : Π(a b : C) (f : hom a b), pF ▹ (H₁ a b f) = H₂ a b f) -- : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := -- functor_eq_mk'' id₁ id₂ comp₁ comp₂ pF -- (eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, -- begin -- apply concat, rotate_left 1, exact (pH c c' f), -- apply concat, rotate_left 1, -- exact (pi_transport_constant pF (H₁ c c') f), -- apply (apD10' f), -- apply concat, rotate_left 1, -- exact (pi_transport_constant pF (H₁ c) c'), -- apply (apD10' c'), -- apply concat, rotate_left 1, -- exact (pi_transport_constant pF H₁ c), -- apply idp -- end)))) -- definition functor_eq_mk1 {F₁ F₂ : C ⇒ D} : Π(p : obF F₁ = obF F₂), -- (Π(a b : C) (f : hom a b), transport (λF, hom (F a) (F b)) p (F₁ f) = F₂ f) -- → F₁ = F₂ := -- functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_eq_mk'1)) --set_option pp.notation false definition functor_uncurry_functor_curry : functor_uncurry (functor_curry F) = F := functor_eq_mk (λp, ap (obF F) !prod.eta) begin intros (cd, cd', fg), cases cd with (c,d), cases cd' with (c',d'), cases fg with (f,g), have H : (functor_uncurry (functor_curry F)) (f, g) = F (f,g), from calc (functor_uncurry (functor_curry F)) (f, g) = homF F (id, g) ∘ homF F (f, id) : idp ... = F (id ∘ f, g ∘ id) : respect_comp F (id,g) (f,id) ... = F (f, g ∘ id) : {id_left f} ... = F (f,g) : {id_right g}, rewrite H, apply sorry end --set_option pp.implicit true definition functor_curry_functor_uncurry : functor_curry (functor_uncurry G) = G := begin fapply functor_eq_mk, {intro c, fapply functor_eq_mk, {intro d, apply idp}, {intros (d, d', g), have H : homF (functor_curry (functor_uncurry G) c) g = homF (G c) g, from calc homF (functor_curry (functor_uncurry G) c) g = homF (G c) g ∘ natural_map (homF G (ID c)) d : idp ... = homF (G c) g ∘ natural_map (ID (G c)) d : ap (λx, homF (G c) g ∘ natural_map x d) (respect_id G c) ... = homF (G c) g : id_right, rewrite H, -- esimp {idp}, apply sorry } }, apply sorry end definition equiv_functor_curry : (C ×c D ⇒ E) ≃ (C ⇒ E ^c D) := equiv.MK functor_curry functor_uncurry functor_curry_functor_uncurry functor_uncurry_functor_curry definition functor_prod_flip_ob : C ×c D ⇒ D ×c C := functor.mk sorry sorry sorry sorry definition contravariant_yoneda_embedding : Cᵒᵖ ⇒ set ^c C := functor_curry !yoneda.representable_functor end functor -- Coq uses unit/counit definitions as basic -- open yoneda precategory.product precategory.opposite functor morphism -- --universe levels are given explicitly because Lean uses 6 variables otherwise -- structure adjoint.{u v} [C D : Precategory.{u v}] (F : C ⇒ D) (G : D ⇒ C) : Type.{max u v} := -- (nat_iso : (representable_functor D) ∘f (prod_functor (opposite_functor F) (functor.ID D)) ⟹ -- (representable_functor C) ∘f (prod_functor (functor.ID (Cᵒᵖ)) G)) -- (is_iso_nat_iso : is_iso nat_iso) -- infix `⊣`:55 := adjoint -- namespace adjoint -- universe variables l1 l2 -- variables [C D : Precategory.{l1 l2}] (F : C ⇒ D) (G : D ⇒ C) -- end adjoint