---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Jeremy Avigad. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Jeremy Avigad, Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.axioms.funext data.bool using eq_proofs bool namespace set definition set (T : Type) := T → bool definition mem {T : Type} (x : T) (s : set T) := (s x) = tt infix `∈`:50 := mem section parameter {T : Type} definition empty : set T := λx, ff notation `∅`:max := empty theorem mem_empty (x : T) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, absurd H ff_ne_tt definition univ : set T := λx, tt theorem mem_univ (x : T) : x ∈ univ := refl _ definition inter (A B : set T) : set T := λx, A x && B x infixl `∩`:70 := inter theorem mem_inter (x : T) (A B : set T) : x ∈ A ∩ B ↔ (x ∈ A ∧ x ∈ B) := iff_intro (assume H, and_intro (band_eq_tt_elim_left H) (band_eq_tt_elim_right H)) (assume H, have e1 : A x = tt, from and_elim_left H, have e2 : B x = tt, from and_elim_right H, show A x && B x = tt, from e1⁻¹ ▸ e2⁻¹ ▸ band_tt_left tt) theorem inter_comm (A B : set T) : A ∩ B = B ∩ A := funext (λx, band_comm (A x) (B x)) theorem inter_assoc (A B C : set T) : (A ∩ B) ∩ C = A ∩ (B ∩ C) := funext (λx, band_assoc (A x) (B x) (C x)) definition union (A B : set T) : set T := λx, A x || B x infixl `∪`:65 := union theorem mem_union (x : T) (A B : set T) : x ∈ A ∪ B ↔ (x ∈ A ∨ x ∈ B) := iff_intro (assume H, bor_to_or H) (assume H, or_elim H (assume Ha : A x = tt, show A x || B x = tt, from Ha⁻¹ ▸ bor_tt_left (B x)) (assume Hb : B x = tt, show A x || B x = tt, from Hb⁻¹ ▸ bor_tt_right (A x))) theorem union_comm (A B : set T) : A ∪ B = B ∪ A := funext (λx, bor_comm (A x) (B x)) theorem union_assoc (A B C : set T) : (A ∪ B) ∪ C = A ∪ (B ∪ C) := funext (λx, bor_assoc (A x) (B x) (C x)) end end