---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Microsoft Corporation. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Jeremy Avigad ---------------------------------------------------------------------------------------------------- import logic.connectives.basic logic.connectives.function using function namespace congr -- TODO: move this somewhere else abbreviation reflexive {T : Type} (R : T → T → Type) : Prop := ∀x, R x x -- Congruence classes for unary and binary functions -- ------------------------------------------------- inductive class {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) : Prop := | mk : (∀x y : T1, R1 x y → R2 (f x) (f y)) → class R1 R2 f abbreviation app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {f : T1 → T2} (C : class R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := class_rec id C x y -- to trigger class inference theorem infer {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) {C : class R1 R2 f} ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := class_rec id C x y -- for binary functions inductive class2 {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) : Prop := | mk2 : (∀(x1 y1 : T1) (x2 y2 : T2), R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) → class2 R1 R2 R3 f abbreviation app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {f : T1 → T2 → T3} (C : class2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := class2_rec id C x1 y1 x2 y2 -- General tools to build instances -- -------------------------------- theorem compose {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {g : T2 → T3} (C2 : congr.class R2 R3 g) {{T1 : Type}} {R1 : T1 → T1 → Prop} {f : T1 → T2} (C1 : congr.class R1 R2 f) : congr.class R1 R3 (λx, g (f x)) := mk (take x1 x2 H, app C2 (app C1 H)) theorem compose21 {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {T4 : Type} {R4 : T4 → T4 → Prop} {g : T2 → T3 → T4} (C3 : congr.class2 R2 R3 R4 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f1 : T1 → T2} (C1 : congr.class R1 R2 f1) {f2 : T1 → T3} (C2 : congr.class R1 R3 f2) : congr.class R1 R4 (λx, g (f1 x) (f2 x)) := mk (take x1 x2 H, app2 C3 (app C1 H) (app C2 H)) theorem trivial [instance] {T : Type} (R : T → T → Prop) : class R R id := mk (take x y H, H) theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : reflexive R2) : ∀(T1 : Type) (R1 : T1 → T1 → Prop) (c : T2), class R1 R2 (function.const T1 c) := take T1 R1 c, mk (take x y H1, H c) -- instances for logic -- ------------------- theorem congr_not : congr.class iff iff not := congr.mk (take a b, assume H : a ↔ b, iff_intro (assume H1 : ¬a, assume H2 : b, H1 (iff_elim_right H H2)) (assume H1 : ¬b, assume H2 : a, H1 (iff_elim_left H H2))) theorem congr_and : congr.class2 iff iff iff and := congr.mk2 (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ∧ a2, and_imp_and H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : b1 ∧ b2, and_imp_and H3 (iff_elim_right H1) (iff_elim_right H2))) theorem congr_or : congr.class2 iff iff iff or := congr.mk2 (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ∨ a2, or_imp_or H3 (iff_elim_left H1) (iff_elim_left H2)) (assume H3 : b1 ∨ b2, or_imp_or H3 (iff_elim_right H1) (iff_elim_right H2))) theorem congr_imp : congr.class2 iff iff iff imp := congr.mk2 (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 → a2, assume Hb1 : b1, iff_elim_left H2 (H3 ((iff_elim_right H1) Hb1))) (assume H3 : b1 → b2, assume Ha1 : a1, iff_elim_right H2 (H3 ((iff_elim_left H1) Ha1)))) theorem congr_iff : congr.class2 iff iff iff iff := congr.mk2 (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff_intro (assume H3 : a1 ↔ a2, iff_trans (iff_symm H1) (iff_trans H3 H2)) (assume H3 : b1 ↔ b2, iff_trans H1 (iff_trans H3 (iff_symm H2)))) theorem congr_const_iff [instance] := congr.const iff iff_refl theorem congr_not_compose [instance] := congr.compose congr_not theorem congr_and_compose [instance] := congr.compose21 congr_and theorem congr_or_compose [instance] := congr.compose21 congr_or theorem congr_implies_compose [instance] := congr.compose21 congr_imp theorem congr_iff_compose [instance] := congr.compose21 congr_iff theorem subst_iff {T : Type} {R : T → T → Prop} {P : T → Prop} {C : class R iff P} {a b : T} (H : R a b) (H1 : P a) : P b := iff_elim_left (app C H) H1 theorem test1 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) := congr.infer iff iff _ H1 theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) := subst_iff H1 H2 -- TODO: move these to new file theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := calc (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or_assoc _ _ _ ... ↔ a ∨ (c ∨ b) : congr.infer iff iff _ (or_comm b c) ... ↔ (a ∨ c) ∨ b : iff_symm (or_assoc _ _ _) -- TODO: add or_left_comm, and_right_comm, and_left_comm