---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.prop namespace equivalence section parameter {A : Type} parameter p : A → A → Prop infix `∼`:50 := p definition reflexive := ∀a, a ∼ a definition symmetric := ∀a b, a ∼ b → b ∼ a definition transitive := ∀a b c, a ∼ b → b ∼ c → a ∼ c end inductive equivalence {A : Type} (p : A → A → Prop) : Prop := | equivalence_intro : reflexive p → symmetric p → transitive p → equivalence p theorem equivalence_reflexive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : reflexive p := equivalence_rec (λ r s t, r) H theorem equivalence_symmetric [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : symmetric p := equivalence_rec (λ r s t, s) H theorem equivalence_transitive [instance] {A : Type} {p : A → A → Prop} (H : equivalence p) : transitive p := equivalence_rec (λ r s t, t) H end