import logic using decidable inductive nat : Type := | zero : nat | succ : nat → nat theorem induction_on {P : nat → Prop} (a : nat) (H1 : P zero) (H2 : ∀ (n : nat) (IH : P n), P (succ n)) : P a := nat_rec H1 H2 a definition pred (n : nat) := nat_rec zero (fun m x, m) n theorem pred_zero : pred zero = zero := refl _ theorem pred_succ (n : nat) : pred (succ n) = n := refl _ theorem zero_or_succ (n : nat) : n = zero ∨ n = succ (pred n) := induction_on n (or_intro_left _ (refl zero)) (take m IH, or_intro_right _ (show succ m = succ (pred (succ m)), from congr2 succ (symm (pred_succ m)))) theorem zero_or_succ2 (n : nat) : n = zero ∨ n = succ (pred n) := @induction_on _ n (or_intro_left _ (refl zero)) (take m IH, or_intro_right _ (show succ m = succ (pred (succ m)), from congr2 succ (symm (pred_succ m))))