/- Copyright (c) 2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn The Smash Product of Types. One definition is the cofiber of the map wedge A B → A × B However, we define it (equivalently) as the pushout of the maps A + B → 2 and A + B → A × B. -/ import homotopy.circle homotopy.join types.pointed homotopy.cofiber homotopy.wedge open bool pointed eq equiv is_equiv sum bool prod unit circle cofiber prod.ops wedge namespace smash variables {A B : Type*} section open pushout definition prod_of_sum [unfold 3] (u : A + B) : A × B := by induction u with a b; exact (a, pt); exact (pt, b) definition bool_of_sum [unfold 3] (u : A + B) : bool := by induction u; exact ff; exact tt definition smash' (A B : Type*) : Type := pushout (@prod_of_sum A B) (@bool_of_sum A B) protected definition mk (a : A) (b : B) : smash' A B := inl (a, b) definition pointed_smash' [instance] [constructor] (A B : Type*) : pointed (smash' A B) := pointed.mk (smash.mk pt pt) definition smash [constructor] (A B : Type*) : Type* := pointed.mk' (smash' A B) definition auxl : smash A B := inr ff definition auxr : smash A B := inr tt definition gluel (a : A) : smash.mk a pt = auxl :> smash A B := glue (inl a) definition gluer (b : B) : smash.mk pt b = auxr :> smash A B := glue (inr b) end definition gluel' (a a' : A) : smash.mk a pt = smash.mk a' pt :> smash A B := gluel a ⬝ (gluel a')⁻¹ definition gluer' (b b' : B) : smash.mk pt b = smash.mk pt b' :> smash A B := gluer b ⬝ (gluer b')⁻¹ definition glue (a : A) (b : B) : smash.mk a pt = smash.mk pt b := gluel' a pt ⬝ gluer' pt b definition glue_pt_left (b : B) : glue (Point A) b = gluer' pt b := whisker_right _ !con.right_inv ⬝ !idp_con definition glue_pt_right (a : A) : glue a (Point B) = gluel' a pt := proof whisker_left _ !con.right_inv qed definition ap_mk_left {a a' : A} (p : a = a') : ap (λa, smash.mk a (Point B)) p = gluel' a a' := by induction p; exact !con.right_inv⁻¹ definition ap_mk_right {b b' : B} (p : b = b') : ap (smash.mk (Point A)) p = gluer' b b' := by induction p; exact !con.right_inv⁻¹ protected definition rec {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b)) (Pl : P auxl) (Pr : P auxr) (Pgl : Πa, Pmk a pt =[gluel a] Pl) (Pgr : Πb, Pmk pt b =[gluer b] Pr) (x : smash' A B) : P x := begin induction x with x b u, { induction x with a b, exact Pmk a b }, { induction b, exact Pl, exact Pr }, { induction u: esimp, { apply Pgl }, { apply Pgr }} end -- a rec which is easier to prove, but with worse computational properties protected definition rec' {P : smash A B → Type} (Pmk : Πa b, P (smash.mk a b)) (Pg : Πa b, Pmk a pt =[glue a b] Pmk pt b) (x : smash' A B) : P x := begin induction x using smash.rec, { apply Pmk }, { exact gluel pt ▸ Pmk pt pt }, { exact gluer pt ▸ Pmk pt pt }, { refine change_path _ (Pg a pt ⬝o !pathover_tr), refine whisker_right _ !glue_pt_right ⬝ _, esimp, refine !con.assoc ⬝ _, apply whisker_left, apply con.left_inv }, { refine change_path _ ((Pg pt b)⁻¹ᵒ ⬝o !pathover_tr), refine whisker_right _ !glue_pt_left⁻² ⬝ _, refine whisker_right _ !inv_con_inv_right ⬝ _, refine !con.assoc ⬝ _, apply whisker_left, apply con.left_inv } end theorem rec_gluel {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)} {Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl) (Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) : apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a := !pushout.rec_glue theorem rec_gluer {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)} {Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl) (Pgr : Πb, Pmk pt b =[gluer b] Pr) (b : B) : apd (smash.rec Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b := !pushout.rec_glue theorem rec_glue {P : smash A B → Type} {Pmk : Πa b, P (smash.mk a b)} {Pl : P auxl} {Pr : P auxr} (Pgl : Πa, Pmk a pt =[gluel a] Pl) (Pgr : Πb, Pmk pt b =[gluer b] Pr) (a : A) (b : B) : apd (smash.rec Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝o (Pgl pt)⁻¹ᵒ) ⬝o (Pgr pt ⬝o (Pgr b)⁻¹ᵒ) := by rewrite [↑glue, ↑gluel', ↑gluer', +apd_con, +apd_inv, +rec_gluel, +rec_gluer] protected definition elim {P : Type} (Pmk : Πa b, P) (Pl Pr : P) (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (x : smash' A B) : P := smash.rec Pmk Pl Pr (λa, pathover_of_eq _ (Pgl a)) (λb, pathover_of_eq _ (Pgr b)) x -- an elim which is easier to prove, but with worse computational properties protected definition elim' {P : Type} (Pmk : Πa b, P) (Pg : Πa b, Pmk a pt = Pmk pt b) (x : smash' A B) : P := smash.rec' Pmk (λa b, pathover_of_eq _ (Pg a b)) x theorem elim_gluel {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluel a) = Pgl a := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluel A B a)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluel], end theorem elim_gluer {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (b : B) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (gluer b) = Pgr b := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (@gluer A B b)), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑smash.elim,rec_gluer], end theorem elim_glue {P : Type} {Pmk : Πa b, P} {Pl Pr : P} (Pgl : Πa : A, Pmk a pt = Pl) (Pgr : Πb : B, Pmk pt b = Pr) (a : A) (b : B) : ap (smash.elim Pmk Pl Pr Pgl Pgr) (glue a b) = (Pgl a ⬝ (Pgl pt)⁻¹) ⬝ (Pgr pt ⬝ (Pgr b)⁻¹) := by rewrite [↑glue, ↑gluel', ↑gluer', +ap_con, +ap_inv, +elim_gluel, +elim_gluer] end smash open smash attribute smash.mk auxl auxr [constructor] attribute smash.rec smash.elim [unfold 9] [recursor 9] attribute smash.rec' smash.elim' [unfold 6] namespace smash variables {A B : Type*} definition of_smash_pbool [unfold 2] (x : smash A pbool) : A := begin induction x, { induction b, exact pt, exact a }, { exact pt }, { exact pt }, { reflexivity }, { induction b: reflexivity } end definition smash_pbool_pequiv [constructor] (A : Type*) : smash A pbool ≃* A := begin fapply pequiv_of_equiv, { fapply equiv.MK, { exact of_smash_pbool }, { intro a, exact smash.mk a tt }, { intro a, reflexivity }, { exact abstract begin intro x, induction x using smash.rec', { induction b, exact (glue a tt)⁻¹, reflexivity }, { apply eq_pathover_id_right, induction b: esimp, { refine ap02 _ !glue_pt_right ⬝ph _, refine ap_compose (λx, smash.mk x _) _ _ ⬝ph _, refine ap02 _ (!ap_con ⬝ (!elim_gluel ◾ (!ap_inv ⬝ !elim_gluel⁻²))) ⬝ph _, apply hinverse, apply square_of_eq, esimp, refine (!glue_pt_right ◾ !glue_pt_left)⁻¹ }, { apply square_of_eq, refine !con.left_inv ⬝ _, esimp, symmetry, refine ap_compose (λx, smash.mk x _) _ _ ⬝ _, exact ap02 _ !elim_glue }} end end }}, { reflexivity } end end smash