/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Hedberg's Theorem: every type with decidable equality is a hset -/ prelude import init.nat init.trunc open eq eq.ops nat truncation sigma -- TODO(Leo): move const coll and path_coll to a different file? private definition const {A B : Type} (f : A → B) := ∀ x y, f x = f y private definition coll (A : Type) := Σ f : A → A, const f private definition path_coll (A : Type) := ∀ x y : A, coll (x = y) context parameter {A : Type} hypothesis (h : decidable_eq A) variables {x y : A} private definition pc : path_coll A := λ a b, decidable.rec_on (h a b) (λ p : a = b, ⟨(λ q, p), λ q r, rfl⟩) (λ np : ¬ a = b, ⟨(λ q, q), λ q r, absurd q np⟩) private definition f : x = y → x = y := sigma.rec_on (pc x y) (λ f c, f) private definition f_const (p q : x = y) : f p = f q := sigma.rec_on (pc x y) (λ f c, c p q) private definition aux (p : x = y) : p = (f (refl x))⁻¹ ⬝ (f p) := have aux : refl x = (f (refl x))⁻¹ ⬝ (f (refl x)), from eq.rec_on (f (refl x)) rfl, eq.rec_on p aux definition is_hset_of_decidable_eq : is_hset A := is_hset.mk A (λ x y p q, calc p = (f (refl x))⁻¹ ⬝ (f p) : aux ... = (f (refl x))⁻¹ ⬝ (f q) : f_const ... = q : aux) end instance [persistent] is_hset_of_decidable_eq