/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.order Author: Jeremy Avigad Various types of orders. We develop weak orders (<=) and strict orders (<) separately. We also consider structures with both, where the two are related by x < y ↔ (x ≤ y ∧ x ≠ y) (order_pair) x ≤ y ↔ (x < y ∨ x = y) (strong_order_pair) These might not hold constructively in some applications, but we can define additional structures with both < and ≤ as needed. -/ import logic.eq logic.connectives import data.unit data.sigma data.prod import algebra.function algebra.binary open eq eq.ops namespace algebra variable {A : Type} /- overloaded symbols -/ structure has_le [class] (A : Type) := (le : A → A → Prop) structure has_lt [class] (A : Type) := (lt : A → A → Prop) infixl `<=` := has_le.le infixl `≤` := has_le.le infixl `<` := has_lt.lt definition has_le.ge {A : Type} [s : has_le A] (a b : A) := b ≤ a notation a ≥ b := has_le.ge a b notation a >= b := has_le.ge a b definition has_lt.gt {A : Type} [s : has_lt A] (a b : A) := b < a notation a > b := has_lt.gt a b theorem le_of_eq_of_le {A : Type} [s : has_le A] {a b c : A} (H1 : a = b) (H2 : b ≤ c) : a ≤ c := H1⁻¹ ▸ H2 theorem le_of_le_of_eq {A : Type} [s : has_le A] {a b c : A} (H1 : a ≤ b) (H2 : b = c) : a ≤ c := H2 ▸ H1 theorem lt_of_eq_of_lt {A : Type} [s : has_lt A] {a b c : A} (H1 : a = b) (H2 : b < c) : a < c := H1⁻¹ ▸ H2 theorem lt_of_lt_of_eq {A : Type} [s : has_lt A] {a b c : A} (H1 : a < b) (H2 : b = c) : a < c := H2 ▸ H1 calc_trans le_of_eq_of_le calc_trans le_of_le_of_eq calc_trans lt_of_eq_of_lt calc_trans lt_of_lt_of_eq /- weak orders -/ structure weak_order [class] (A : Type) extends has_le A := (le_refl : ∀a, le a a) (le_trans : ∀a b c, le a b → le b c → le a c) (le_antisym : ∀a b, le a b → le b a → a = b) theorem le.refl [s : weak_order A] (a : A) : a ≤ a := !weak_order.le_refl theorem le.trans [s : weak_order A] {a b c : A} : a ≤ b → b ≤ c → a ≤ c := !weak_order.le_trans calc_trans le.trans theorem le.antisym [s : weak_order A] {a b : A} : a ≤ b → b ≤ a → a = b := !weak_order.le_antisym structure linear_weak_order [class] (A : Type) extends weak_order A := (le_total : ∀a b, le a b ∨ le b a) theorem le.total [s : linear_weak_order A] (a b : A) : a ≤ b ∨ b ≤ a := !linear_weak_order.le_total /- strict orders -/ structure strict_order [class] (A : Type) extends has_lt A := (lt_irrefl : ∀a, ¬ lt a a) (lt_trans : ∀a b c, lt a b → lt b c → lt a c) theorem lt.irrefl [s : strict_order A] (a : A) : ¬ a < a := !strict_order.lt_irrefl theorem lt.trans [s : strict_order A] {a b c : A} : a < b → b < c → a < c := !strict_order.lt_trans calc_trans lt.trans theorem lt.ne [s : strict_order A] {a b : A} : a < b → a ≠ b := assume lt_ab : a < b, assume eq_ab : a = b, lt.irrefl a (eq_ab⁻¹ ▸ lt_ab) /- well-founded orders -/ -- TODO: do these duplicate what Leo has done? if so, eliminate structure wf_strict_order [class] (A : Type) extends strict_order A := (wf_rec : ∀P : A → Type, (∀x, (∀y, lt y x → P y) → P x) → ∀x, P x) definition wf.rec_on {A : Type} [s : wf_strict_order A] {P : A → Type} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf_strict_order.wf_rec P H x theorem wf.ind_on.{u v} {A : Type.{u}} [s : wf_strict_order.{u 0} A] {P : A → Prop} (x : A) (H : ∀x, (∀y, wf_strict_order.lt y x → P y) → P x) : P x := wf.rec_on x H /- structures with a weak and a strict order -/ structure order_pair [class] (A : Type) extends weak_order A, has_lt A := (lt_iff_le_ne : ∀a b, lt a b ↔ (le a b ∧ a ≠ b)) section variable [s : order_pair A] variables {a b c : A} include s theorem lt_iff_le_and_ne : a < b ↔ (a ≤ b ∧ a ≠ b) := !order_pair.lt_iff_le_ne theorem le_of_lt (H : a < b) : a ≤ b := and.elim_left (iff.mp lt_iff_le_and_ne H) theorem lt_of_le_of_ne (H1 : a ≤ b) (H2 : a ≠ b) : a < b := iff.mp (iff.symm lt_iff_le_and_ne) (and.intro H1 H2) definition order_pair.to_strict_order [instance] [s : order_pair A] : strict_order A := strict_order.mk order_pair.lt (show ∀a, ¬ a < a, from take a, assume H : a < a, have H1 : a ≠ a, from and.elim_right (iff.mp !lt_iff_le_and_ne H), H1 rfl) (show ∀a b c, a < b → b < c → a < c, from take a b c, assume lt_ab : a < b, have le_ab : a ≤ b, from le_of_lt lt_ab, assume lt_bc : b < c, have le_bc : b ≤ c, from le_of_lt lt_bc, have le_ac : a ≤ c, from le.trans le_ab le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisym le_ab le_ba, have ne_ab : a ≠ b, from and.elim_right (iff.mp lt_iff_le_and_ne lt_ab), ne_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac) theorem lt_of_lt_of_le : a < b → b ≤ c → a < c := assume lt_ab : a < b, assume le_bc : b ≤ c, have le_ac : a ≤ c, from le.trans (le_of_lt lt_ab) le_bc, have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_ba : b ≤ a, from eq_ac⁻¹ ▸ le_bc, have eq_ab : a = b, from le.antisym (le_of_lt lt_ab) le_ba, show false, from lt.ne lt_ab eq_ab, show a < c, from lt_of_le_of_ne le_ac ne_ac theorem lt_of_le_of_lt : a ≤ b → b < c → a < c := assume le_ab : a ≤ b, assume lt_bc : b < c, have le_ac : a ≤ c, from le.trans le_ab (le_of_lt lt_bc), have ne_ac : a ≠ c, from assume eq_ac : a = c, have le_cb : c ≤ b, from eq_ac ▸ le_ab, have eq_bc : b = c, from le.antisym (le_of_lt lt_bc) le_cb, show false, from lt.ne lt_bc eq_bc, show a < c, from lt_of_le_of_ne le_ac ne_ac calc_trans lt_of_lt_of_le calc_trans lt_of_le_of_lt theorem not_le_of_lt (H : a < b) : ¬ b ≤ a := assume H1 : b ≤ a, lt.irrefl _ (lt_of_lt_of_le H H1) theorem not_lt_of_le (H : a ≤ b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt_of_le_of_lt H H1) theorem not_lt_of_lt (H : a < b) : ¬ b < a := assume H1 : b < a, lt.irrefl _ (lt.trans H1 H) end structure strong_order_pair [class] (A : Type) extends order_pair A := (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b ∨ a = b) theorem le_iff_lt_or_eq [s : strong_order_pair A] {a b : A} : a ≤ b ↔ a < b ∨ a = b := !strong_order_pair.le_iff_lt_or_eq theorem le_imp_lt_or_eq [s : strong_order_pair A] {a b : A} (le_ab : a ≤ b) : a < b ∨ a = b := iff.mp le_iff_lt_or_eq le_ab -- We can also construct a strong order pair by defining a strict order, and then defining -- x ≤ y ↔ x < y ∨ x = y structure strict_order_with_le [class] (A : Type) extends strict_order A, has_le A := (le_iff_lt_or_eq : ∀a b, le a b ↔ lt a b ∨ a = b) definition strict_order_with_le.to_order_pair [instance] [s : strict_order_with_le A] : strong_order_pair A := strong_order_pair.mk strict_order_with_le.le (take a, show a ≤ a, from iff.mp (iff.symm !strict_order_with_le.le_iff_lt_or_eq) (or.intro_right _ rfl)) (take a b c, assume le_ab : a ≤ b, assume le_bc : b ≤ c, show a ≤ c, from or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_bc) (assume lt_bc : b < c, iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ (lt.trans lt_ab lt_bc))) (assume eq_bc : b = c, eq_bc ▸ le_ab)) (assume eq_ab : a = b, eq_ab⁻¹ ▸ le_bc)) (take a b, assume le_ab : a ≤ b, assume le_ba : b ≤ a, show a = b, from or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ab) (assume lt_ab : a < b, or.elim (iff.mp !strict_order_with_le.le_iff_lt_or_eq le_ba) (assume lt_ba : b < a, absurd (lt.trans lt_ab lt_ba) (lt.irrefl a)) (assume eq_ba : b = a, eq_ba⁻¹)) (assume eq_ab : a = b, eq_ab)) strict_order_with_le.lt (take a b, iff.intro (assume lt_ab : a < b, have le_ab : a ≤ b, from iff.elim_right !strict_order_with_le.le_iff_lt_or_eq (or.intro_left _ lt_ab), show a ≤ b ∧ a ≠ b, from and.intro le_ab (lt.ne lt_ab)) (assume H : a ≤ b ∧ a ≠ b, have H1 : a < b ∨ a = b, from iff.mp !strict_order_with_le.le_iff_lt_or_eq (and.elim_left H), show a < b, from or_resolve_left H1 (and.elim_right H))) strict_order_with_le.le_iff_lt_or_eq /- linear orders -/ structure linear_order_pair [class] (A : Type) extends order_pair A, linear_weak_order A structure linear_strong_order_pair [class] (A : Type) extends strong_order_pair A := (lt_or_eq_or_lt : ∀a b, lt a b ∨ a = b ∨ lt b a) section variable [s : linear_strong_order_pair A] variables (a b c : A) include s theorem lt_or_eq_or_lt : a < b ∨ a = b ∨ b < a := !linear_strong_order_pair.lt_or_eq_or_lt theorem lt_or_eq_or_lt_cases {a b : A} {P : Prop} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := or.elim !lt_or_eq_or_lt (assume H, H1 H) (assume H, or.elim H (assume H', H2 H') (assume H', H3 H')) definition linear_strong_order_pair.to_linear_order_pair [instance] [s : linear_strong_order_pair A] : linear_order_pair A := linear_order_pair.mk linear_strong_order_pair.le linear_strong_order_pair.le_refl linear_strong_order_pair.le_trans linear_strong_order_pair.le_antisym linear_strong_order_pair.lt linear_strong_order_pair.lt_iff_le_ne (take a b : A, lt_or_eq_or_lt_cases (assume H : a < b, or.inl (le_of_lt H)) (assume H1 : a = b, or.inl (H1 ▸ !le.refl)) (assume H1 : b < a, or.inr (le_of_lt H1))) definition le_of_not_lt {a b : A} (H : ¬ a < b) : b ≤ a := lt_or_eq_or_lt_cases (assume H', absurd H' H) (assume H', H' ▸ !le.refl) (assume H', le_of_lt H') definition lt_of_not_le {a b : A} (H : ¬ a ≤ b) : b < a := lt_or_eq_or_lt_cases (assume H', absurd (le_of_lt H') H) (assume H', absurd (H' ▸ !le.refl) H) (assume H', H') end end algebra