/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn truncating an ∞-group to a group -/ import hit.trunc algebra.group open eq is_trunc trunc namespace algebra section parameters (n : trunc_index) {A : Type} (mul : A → A → A) (inv : A → A) (one : A) (mul_assoc : ∀a b c, mul (mul a b) c = mul a (mul b c)) (one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a) (mul_left_inv : ∀a, mul (inv a) a = one) local abbreviation G := trunc n A include mul definition trunc_mul [unfold 9 10] (g h : G) : G := begin induction g with p, induction h with q, exact tr (mul p q) end omit mul include inv definition trunc_inv [unfold 9] (g : G) : G := begin induction g with p, exact tr (inv p) end omit inv include one definition trunc_one [constructor] : G := tr one local notation 1 := trunc_one local postfix ⁻¹ := trunc_inv local infix * := trunc_mul parameters {mul} {inv} {one} omit one include mul_assoc theorem trunc_mul_assoc (g₁ g₂ g₃ : G) : g₁ * g₂ * g₃ = g₁ * (g₂ * g₃) := begin induction g₁ with p₁, induction g₂ with p₂, induction g₃ with p₃, exact ap tr !mul_assoc, end omit mul_assoc include one_mul theorem trunc_one_mul (g : G) : 1 * g = g := begin induction g with p, exact ap tr !one_mul end omit one_mul include mul_one theorem trunc_mul_one (g : G) : g * 1 = g := begin induction g with p, exact ap tr !mul_one end omit mul_one include mul_left_inv theorem trunc_mul_left_inv (g : G) : g⁻¹ * g = 1 := begin induction g with p, exact ap tr !mul_left_inv end omit mul_left_inv theorem trunc_mul_comm (mul_comm : ∀a b, mul a b = mul b a) (g h : G) : g * h = h * g := begin induction g with p, induction h with q, exact ap tr !mul_comm end parameters (mul) (inv) (one) definition trunc_group [constructor] : group (trunc 0 A) := ⦃group, mul := algebra.trunc_mul 0 mul, mul_assoc := algebra.trunc_mul_assoc 0 mul_assoc, one := algebra.trunc_one 0 one, one_mul := algebra.trunc_one_mul 0 one_mul, mul_one := algebra.trunc_mul_one 0 mul_one, inv := algebra.trunc_inv 0 inv, mul_left_inv := algebra.trunc_mul_left_inv 0 mul_left_inv, is_set_carrier := _⦄ definition trunc_ab_group [constructor] (mul_comm : ∀a b, mul a b = mul b a) : ab_group (trunc 0 A) := ⦃ab_group, trunc_group, mul_comm := algebra.trunc_mul_comm 0 mul_comm⦄ end end algebra