(* Define a "fake" type to simulate the natural numbers. This is just a test. *) Variable Natural : Type Variable lt : Natural -> Natural -> Bool Variable zero : Natural Variable one : Natural Variable two : Natural Variable three : Natural Infix 50 < : lt Axiom two_lt_three : two < three Definition vector (A : Type) (n : Natural) : Type := Pi (i : Natural) (H : i < n), A Definition const (A : Type) (n : Natural) (d : A) : vector A n := fun (i : Natural) (H : i < n), d Definition update (A : Type) (n : Natural) (v : vector A n) (i : Natural) (d : A) : vector A n := fun (j : Natural) (H : j < n), if A (j = i) d (v j H) Definition select (A : Type) (n : Natural) (v : vector A n) (i : Natural) (H : i < n) : A := v i H Definition map (A B C : Type) (n : Natural) (f : A -> B -> C) (v1 : vector A n) (v2 : vector B n) : vector C n := fun (i : Natural) (H : i < n), f (v1 i H) (v2 i H) Show Environment Check select Bool three (update Bool three (const Bool three false) two true) two two_lt_three Eval select Bool three (update Bool three (const Bool three false) two true) two two_lt_three Check select Echo "\nmap type ---> " Check map Echo "\nmap normal form --> " Eval map Echo "\nupdate normal form --> " Eval update