/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ring Authors: Jeremy Avigad, Leonardo de Moura Structures with multiplicative and additive components, including semirings, rings, and fields. The development is modeled after Isabelle's library. -/ import logic.eq logic.connectives data.unit data.sigma data.prod import algebra.function algebra.binary algebra.group open eq eq.ops namespace algebra variable {A : Type} /- auxiliary classes -/ structure distrib [class] (A : Type) extends has_mul A, has_add A := (left_distrib : ∀a b c, mul a (add b c) = add (mul a b) (mul a c)) (right_distrib : ∀a b c, mul (add a b) c = add (mul a c) (mul b c)) theorem left_distrib [s : distrib A] (a b c : A) : a * (b + c) = a * b + a * c := !distrib.left_distrib theorem right_distrib [s: distrib A] (a b c : A) : (a + b) * c = a * c + b * c := !distrib.right_distrib structure mul_zero_class [class] (A : Type) extends has_mul A, has_zero A := (zero_mul : ∀a, mul zero a = zero) (mul_zero : ∀a, mul a zero = zero) theorem zero_mul [s : mul_zero_class A] (a : A) : 0 * a = 0 := !mul_zero_class.zero_mul theorem mul_zero [s : mul_zero_class A] (a : A) : a * 0 = 0 := !mul_zero_class.mul_zero structure zero_ne_one_class [class] (A : Type) extends has_zero A, has_one A := (zero_ne_one : zero ≠ one) theorem zero_ne_one [s: zero_ne_one_class A] : 0 ≠ 1 := @zero_ne_one_class.zero_ne_one A s /- semiring -/ structure semiring [class] (A : Type) extends add_comm_monoid A, monoid A, distrib A, mul_zero_class A, zero_ne_one_class A section semiring variables [s : semiring A] (a b c : A) include s theorem ne_zero_of_mul_ne_zero_right {a b : A} (H : a * b ≠ 0) : a ≠ 0 := assume H1 : a = 0, have H2 : a * b = 0, from H1⁻¹ ▸ zero_mul b, H H2 theorem ne_zero_of_mul_ne_zero_left {a b : A} (H : a * b ≠ 0) : b ≠ 0 := assume H1 : b = 0, have H2 : a * b = 0, from H1⁻¹ ▸ mul_zero a, H H2 end semiring /- comm semiring -/ structure comm_semiring [class] (A : Type) extends semiring A, comm_semigroup A -- TODO: we could also define a cancelative comm_semiring, i.e. satisfying -- c ≠ 0 → c * a = c * b → a = b. section comm_semiring variables [s : comm_semiring A] (a b c : A) include s definition dvd (a b : A) : Prop := ∃c, b = a * c infix `|` := dvd theorem dvd.intro {a b c : A} (H : a * c = b) : a | b := exists.intro _ H⁻¹ theorem dvd.intro_left {a b c : A} (H : c * a = b) : a | b := dvd.intro (!mul.comm ▸ H) theorem exists_eq_mul_right_of_dvd {a b : A} (H : a | b) : ∃c, b = a * c := H theorem dvd.elim {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, b = a * c → P) : P := exists.elim H₁ H₂ theorem exists_eq_mul_left_of_dvd {a b : A} (H : a | b) : ∃c, b = c * a := dvd.elim H (take c, assume H1 : b = a * c, exists.intro c (H1 ⬝ !mul.comm)) theorem dvd.elim_left {P : Prop} {a b : A} (H₁ : a | b) (H₂ : ∀c, b = c * a → P) : P := exists.elim (exists_eq_mul_left_of_dvd H₁) (take c, assume H₃ : b = c * a, H₂ c H₃) theorem dvd.refl : a | a := dvd.intro !mul_one theorem dvd.trans {a b c : A} (H₁ : a | b) (H₂ : b | c) : a | c := dvd.elim H₁ (take d, assume H₃ : b = a * d, dvd.elim H₂ (take e, assume H₄ : c = b * e, dvd.intro (calc a * (d * e) = (a * d) * e : mul.assoc ... = b * e : H₃ ... = c : H₄))) theorem eq_zero_of_zero_dvd {a : A} (H : 0 | a) : a = 0 := dvd.elim H (take c, assume H' : a = 0 * c, H' ⬝ !zero_mul) theorem dvd_zero : a | 0 := dvd.intro !mul_zero theorem one_dvd : 1 | a := dvd.intro !one_mul theorem dvd_mul_right : a | a * b := dvd.intro rfl theorem dvd_mul_left : a | b * a := mul.comm a b ▸ dvd_mul_right a b theorem dvd_mul_of_dvd_left {a b : A} (H : a | b) (c : A) : a | b * c := dvd.elim H (take d, assume H₁ : b = a * d, dvd.intro (calc a * (d * c) = a * d * c : (!mul.assoc)⁻¹ ... = b * c : H₁)) theorem dvd_mul_of_dvd_right {a b : A} (H : a | b) (c : A) : a | c * b := !mul.comm ▸ (dvd_mul_of_dvd_left H _) theorem mul_dvd_mul {a b c d : A} (dvd_ab : a | b) (dvd_cd : c | d) : a * c | b * d := dvd.elim dvd_ab (take e, assume Haeb : b = a * e, dvd.elim dvd_cd (take f, assume Hcfd : d = c * f, dvd.intro (show a * c * (e * f) = b * d, by rewrite [mul.assoc, {c*_}mul.left_comm, -mul.assoc, Haeb, Hcfd]))) theorem dvd_of_mul_right_dvd {a b c : A} (H : a * b | c) : a | c := dvd.elim H (take d, assume Habdc : c = a * b * d, dvd.intro (!mul.assoc⁻¹ ⬝ Habdc⁻¹)) theorem dvd_of_mul_left_dvd {a b c : A} (H : a * b | c) : b | c := dvd_of_mul_right_dvd (mul.comm a b ▸ H) theorem dvd_add {a b c : A} (Hab : a | b) (Hac : a | c) : a | b + c := dvd.elim Hab (take d, assume Hadb : b = a * d, dvd.elim Hac (take e, assume Haec : c = a * e, dvd.intro (show a * (d + e) = b + c, by rewrite [left_distrib, -Hadb, -Haec]))) end comm_semiring /- ring -/ structure ring [class] (A : Type) extends add_comm_group A, monoid A, distrib A, zero_ne_one_class A theorem ring.mul_zero [s : ring A] (a : A) : a * 0 = 0 := have H : a * 0 + 0 = a * 0 + a * 0, from calc a * 0 + 0 = a * 0 : add_zero ... = a * (0 + 0) : {(add_zero 0)⁻¹} ... = a * 0 + a * 0 : ring.left_distrib, show a * 0 = 0, from (add.left_cancel H)⁻¹ theorem ring.zero_mul [s : ring A] (a : A) : 0 * a = 0 := have H : 0 * a + 0 = 0 * a + 0 * a, from calc 0 * a + 0 = 0 * a : add_zero ... = (0 + 0) * a : {(add_zero 0)⁻¹} ... = 0 * a + 0 * a : ring.right_distrib, show 0 * a = 0, from (add.left_cancel H)⁻¹ definition ring.to_semiring [instance] [coercion] [reducible] [s : ring A] : semiring A := ⦃ semiring, s, mul_zero := ring.mul_zero, zero_mul := ring.zero_mul ⦄ section variables [s : ring A] (a b c d e : A) include s theorem neg_mul_eq_neg_mul : -(a * b) = -a * b := neg_eq_of_add_eq_zero (calc a * b + -a * b = (a + -a) * b : right_distrib ... = 0 * b : add.right_inv ... = 0 : zero_mul) theorem neg_mul_eq_mul_neg : -(a * b) = a * -b := neg_eq_of_add_eq_zero (calc a * b + a * -b = a * (b + -b) : left_distrib ... = a * 0 : add.right_inv ... = 0 : mul_zero) theorem neg_mul_neg : -a * -b = a * b := calc -a * -b = -(a * -b) : !neg_mul_eq_neg_mul⁻¹ ... = - -(a * b) : neg_mul_eq_mul_neg ... = a * b : neg_neg theorem neg_mul_comm : -a * b = a * -b := !neg_mul_eq_neg_mul⁻¹ ⬝ !neg_mul_eq_mul_neg theorem neg_eq_neg_one_mul : -a = -1 * a := calc -a = -(1 * a) : one_mul ... = -1 * a : neg_mul_eq_neg_mul theorem mul_sub_left_distrib : a * (b - c) = a * b - a * c := calc a * (b - c) = a * b + a * -c : left_distrib ... = a * b + - (a * c) : {!neg_mul_eq_mul_neg⁻¹} ... = a * b - a * c : rfl theorem mul_sub_right_distrib : (a - b) * c = a * c - b * c := calc (a - b) * c = a * c + -b * c : right_distrib ... = a * c + - (b * c) : {!neg_mul_eq_neg_mul⁻¹} ... = a * c - b * c : rfl -- TODO: can calc mode be improved to make this easier? -- TODO: there is also the other direction. It will be easier when we -- have the simplifier. theorem mul_add_eq_mul_add_iff_sub_mul_add_eq : a * e + c = b * e + d ↔ (a - b) * e + c = d := calc a * e + c = b * e + d ↔ a * e + c = d + b * e : !add.comm ▸ !iff.refl ... ↔ a * e + c - b * e = d : iff.symm !sub_eq_iff_eq_add ... ↔ a * e - b * e + c = d : !sub_add_eq_add_sub ▸ !iff.refl ... ↔ (a - b) * e + c = d : !mul_sub_right_distrib ▸ !iff.refl end structure comm_ring [class] (A : Type) extends ring A, comm_semigroup A definition comm_ring.to_comm_semiring [instance] [coercion] [reducible] [s : comm_ring A] : comm_semiring A := ⦃ comm_semiring, s, mul_zero := mul_zero, zero_mul := zero_mul ⦄ section variables [s : comm_ring A] (a b c d e : A) include s -- TODO: wait for the simplifier theorem mul_self_sub_mul_self_eq : a * a - b * b = (a + b) * (a - b) := sorry theorem mul_self_sub_one_eq : a * a - 1 = (a + 1) * (a - 1) := mul_one 1 ▸ mul_self_sub_mul_self_eq a 1 theorem dvd_neg_iff_dvd : a | -b ↔ a | b := iff.intro (assume H : a | -b, dvd.elim H (take c, assume H' : -b = a * c, dvd.intro (calc a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹} ... = -(-b) : H' ... = b : neg_neg))) (assume H : a | b, dvd.elim H (take c, assume H' : b = a * c, dvd.intro (calc a * -c = -(a * c) : {!neg_mul_eq_mul_neg⁻¹} ... = -b : H'))) theorem neg_dvd_iff_dvd : -a | b ↔ a | b := iff.intro (assume H : -a | b, dvd.elim H (take c, assume H' : b = -a * c, dvd.intro (calc a * -c = -a * c : !neg_mul_comm⁻¹ ... = b : H'))) (assume H : a | b, dvd.elim H (take c, assume H' : b = a * c, dvd.intro (calc -a * -c = a * c : neg_mul_neg ... = b : H'))) theorem dvd_sub (H₁ : a | b) (H₂ : a | c) : a | (b - c) := dvd_add H₁ (iff.elim_right !dvd_neg_iff_dvd H₂) end /- integral domains -/ structure no_zero_divisors [class] (A : Type) extends has_mul A, has_zero A := (eq_zero_or_eq_zero_of_mul_eq_zero : ∀a b, mul a b = zero → a = zero ∨ b = zero) theorem eq_zero_or_eq_zero_of_mul_eq_zero {A : Type} [s : no_zero_divisors A] {a b : A} (H : a * b = 0) : a = 0 ∨ b = 0 := !no_zero_divisors.eq_zero_or_eq_zero_of_mul_eq_zero H structure integral_domain [class] (A : Type) extends comm_ring A, no_zero_divisors A section variables [s : integral_domain A] (a b c d e : A) include s theorem mul_ne_zero {a b : A} (H1 : a ≠ 0) (H2 : b ≠ 0) : a * b ≠ 0 := assume H : a * b = 0, or.elim (eq_zero_or_eq_zero_of_mul_eq_zero H) (assume H3, H1 H3) (assume H4, H2 H4) theorem mul.cancel_right {a b c : A} (Ha : a ≠ 0) (H : b * a = c * a) : b = c := have H1 : b * a - c * a = 0, from iff.mp !eq_iff_sub_eq_zero H, have H2 : (b - c) * a = 0, from eq.trans !mul_sub_right_distrib H1, have H3 : b - c = 0, from or_resolve_left (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha, iff.elim_right !eq_iff_sub_eq_zero H3 theorem mul.cancel_left {a b c : A} (Ha : a ≠ 0) (H : a * b = a * c) : b = c := have H1 : a * b - a * c = 0, from iff.mp !eq_iff_sub_eq_zero H, have H2 : a * (b - c) = 0, from eq.trans !mul_sub_left_distrib H1, have H3 : b - c = 0, from or_resolve_right (eq_zero_or_eq_zero_of_mul_eq_zero H2) Ha, iff.elim_right !eq_iff_sub_eq_zero H3 -- TODO: do we want the iff versions? -- TODO: wait for simplifier theorem mul_self_eq_mul_self_iff (a b : A) : a * a = b * b ↔ a = b ∨ a = -b := sorry theorem mul_self_eq_one_iff (a : A) : a * a = 1 ↔ a = 1 ∨ a = -1 := sorry -- TODO: c - b * c → c = 0 ∨ b = 1 and variants theorem dvd_of_mul_dvd_mul_left {a b c : A} (Ha : a ≠ 0) (Hdvd : a * b | a * c) : b | c := dvd.elim Hdvd (take d, assume H : a * c = a * b * d, have H1 : b * d = c, from mul.cancel_left Ha (mul.assoc a b d ▸ H⁻¹), dvd.intro H1) theorem dvd_of_mul_dvd_mul_right {a b c : A} (Ha : a ≠ 0) (Hdvd : b * a | c * a) : b | c := dvd.elim Hdvd (take d, assume H : c * a = b * a * d, have H1 : b * d * a = c * a, from eq.trans !mul.right_comm H⁻¹, have H2 : b * d = c, from mul.cancel_right Ha H1, dvd.intro H2) end end algebra