/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Cardinality of finite sets. -/ import .finite data.finset.card open nat classical namespace set variable {A : Type} noncomputable definition card (s : set A) := finset.card (set.to_finset s) theorem card_to_set (s : finset A) : card (finset.to_set s) = finset.card s := by rewrite [↑card, to_finset_to_set] theorem card_of_not_finite {s : set A} (nfins : ¬ finite s) : card s = 0 := by rewrite [↑card, to_finset_of_not_finite nfins] theorem card_empty : card (∅ : set A) = 0 := by rewrite [-finset.to_set_empty, card_to_set] theorem card_insert_of_mem {a : A} {s : set A} (H : a ∈ s) : card (insert a s) = card s := if fins : finite s then (by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_mem H]) else (assert ¬ finite (insert a s), from suppose _, absurd (!finite_of_finite_insert this) fins, by rewrite [card_of_not_finite fins, card_of_not_finite this]) theorem card_insert_of_not_mem {a : A} {s : set A} [fins : finite s] (H : a ∉ s) : card (insert a s) = card s + 1 := by rewrite [↑card, to_finset_insert, -mem_to_finset_eq at H, finset.card_insert_of_not_mem H] theorem card_insert_le (a : A) (s : set A) [fins : finite s] : card (insert a s) ≤ card s + 1 := if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ else by rewrite [card_insert_of_not_mem H] theorem card_singleton (a : A) : card '{a} = 1 := by rewrite [card_insert_of_not_mem !not_mem_empty, card_empty] /- Note: the induction tactic does not work well with the set induction principle with the extra predicate "finite". -/ theorem eq_empty_of_card_eq_zero {s : set A} [fins : finite s] : card s = 0 → s = ∅ := induction_on_finite s (by intro H; exact rfl) (begin intro a s' fins' anins IH H, rewrite (card_insert_of_not_mem anins) at H, apply nat.no_confusion H end) theorem card_upto (n : ℕ) : card {i | i < n} = n := by rewrite [↑card, to_finset_upto, finset.card_upto] theorem card_add_card (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] : card s₁ + card s₂ = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) := begin rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂], rewrite [-finset.to_set_union, -finset.to_set_inter, *card_to_set], apply finset.card_add_card end theorem card_union (s₁ s₂ : set A) [fins₁ : finite s₁] [fins₂ : finite s₂] : card (s₁ ∪ s₂) = card s₁ + card s₂ - card (s₁ ∩ s₂) := calc card (s₁ ∪ s₂) = card (s₁ ∪ s₂) + card (s₁ ∩ s₂) - card (s₁ ∩ s₂) : add_sub_cancel ... = card s₁ + card s₂ - card (s₁ ∩ s₂) : card_add_card s₁ s₂ theorem card_union_of_disjoint {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ∩ s₂ = ∅) : card (s₁ ∪ s₂) = card s₁ + card s₂ := by rewrite [card_union, H, card_empty] theorem card_eq_card_add_card_diff {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) : card s₂ = card s₁ + card (s₂ \ s₁) := have H1 : s₁ ∩ (s₂ \ s₁) = ∅, from eq_empty_of_forall_not_mem (take x, assume H, (and.right (and.right H)) (and.left H)), have s₂ = s₁ ∪ (s₂ \ s₁), from eq.symm (union_diff_cancel H), calc card s₂ = card (s₁ ∪ (s₂ \ s₁)) : {this} ... = card s₁ + card (s₂ \ s₁) : card_union_of_disjoint H1 theorem card_le_card_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (H : s₁ ⊆ s₂) : card s₁ ≤ card s₂ := calc card s₂ = card s₁ + card (s₂ \ s₁) : card_eq_card_add_card_diff H ... ≥ card s₁ : le_add_right variable {B : Type} theorem card_image_eq_of_inj_on {f : A → B} {s : set A} [fins : finite s] (injfs : inj_on f s) : card (image f s) = card s := begin rewrite [↑card, to_finset_image]; apply finset.card_image_eq_of_inj_on, rewrite to_set_to_finset, apply injfs end theorem card_le_of_inj_on (a : set A) (b : set B) [finb : finite b] (Pex : ∃ f : A → B, inj_on f a ∧ (image f a ⊆ b)) : card a ≤ card b := by_cases (assume fina : finite a, obtain f H, from Pex, finset.card_le_of_inj_on (to_finset a) (to_finset b) (exists.intro f begin rewrite [finset.subset_eq_to_set_subset, finset.to_set_image, *to_set_to_finset], exact H end)) (assume nfina : ¬ finite a, by rewrite [card_of_not_finite nfina]; exact !zero_le) theorem card_image_le (f : A → B) (s : set A) [fins : finite s] : card (image f s) ≤ card s := by rewrite [↑card, to_finset_image]; apply finset.card_image_le theorem inj_on_of_card_image_eq {f : A → B} {s : set A} [fins : finite s] (H : card (image f s) = card s) : inj_on f s := begin rewrite -to_set_to_finset, apply finset.inj_on_of_card_image_eq, rewrite [-to_finset_to_set (finset.image _ _), finset.to_set_image, to_set_to_finset], exact H end theorem card_pos_of_mem {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : card s > 0 := have (#finset a ∈ to_finset s), by rewrite [finset.mem_eq_mem_to_set, to_set_to_finset]; apply H, finset.card_pos_of_mem this theorem eq_of_card_eq_of_subset {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (Hcard : card s₁ = card s₂) (Hsub : s₁ ⊆ s₂) : s₁ = s₂ := begin rewrite [-to_set_to_finset s₁, -to_set_to_finset s₂, -finset.eq_eq_to_set_eq], apply finset.eq_of_card_eq_of_subset Hcard, rewrite [to_finset_subset_to_finset_eq], exact Hsub end theorem exists_two_of_card_gt_one {s : set A} (H : 1 < card s) : ∃ a b, a ∈ s ∧ b ∈ s ∧ a ≠ b := assert fins : finite s, from by_contradiction (assume nfins, by rewrite [card_of_not_finite nfins at H]; apply !not_succ_le_zero H), by rewrite [-to_set_to_finset s]; apply finset.exists_two_of_card_gt_one H end set