import data.nat open nat algebra section variables (a b c d e : nat) theorem T (H1 : a = b) (H2 : b = c + 1) (H3 : c = d) (H4 : e = 1 + d) : a = e := by rewrite [H1, H2, H3, add.comm, -H4] end example (x y : ℕ) : (x + y) * (x + y) = x * x + y * x + x * y + y * y := by rewrite [*left_distrib, *right_distrib, -add.assoc] namespace tst definition even (a : nat) := ∃b, a = 2*b theorem even_plus_even {a b : nat} (H1 : even a) (H2 : even b) : even (a + b) := exists.elim H1 (fun (w1 : nat) (Hw1 : a = 2*w1), exists.elim H2 (fun (w2 : nat) (Hw2 : b = 2*w2), exists.intro (w1 + w2) begin rewrite [Hw1, Hw2, left_distrib] end)) theorem T2 (a b c : nat) (H1 : a = b) (H2 : b = c + 1) : a ≠ 0 := calc a = succ c : by rewrite [H1, H2, add_one] ... ≠ 0 : succ_ne_zero c end tst