/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Declaration of suspension -/ import .pushout types.pointed types.cubical.square open pushout unit eq equiv equiv.ops definition susp (A : Type) : Type := pushout (λ(a : A), star) (λ(a : A), star) namespace susp variable {A : Type} definition north {A : Type} : susp A := inl _ _ star definition south {A : Type} : susp A := inr _ _ star definition merid (a : A) : @north A = @south A := glue _ _ a protected definition rec {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (x : susp A) : P x := begin induction x with u u, { cases u, exact PN}, { cases u, exact PS}, { apply Pm}, end protected definition rec_on [reducible] {P : susp A → Type} (y : susp A) (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) : P y := susp.rec PN PS Pm y theorem rec_merid {P : susp A → Type} (PN : P north) (PS : P south) (Pm : Π(a : A), PN =[merid a] PS) (a : A) : apdo (susp.rec PN PS Pm) (merid a) = Pm a := !rec_glue protected definition elim {P : Type} (PN : P) (PS : P) (Pm : A → PN = PS) (x : susp A) : P := susp.rec PN PS (λa, pathover_of_eq (Pm a)) x protected definition elim_on [reducible] {P : Type} (x : susp A) (PN : P) (PS : P) (Pm : A → PN = PS) : P := susp.elim PN PS Pm x theorem elim_merid {P : Type} {PN PS : P} (Pm : A → PN = PS) (a : A) : ap (susp.elim PN PS Pm) (merid a) = Pm a := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (merid a)), rewrite [▸*,-apdo_eq_pathover_of_eq_ap,↑susp.elim,rec_merid], end protected definition elim_type (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (x : susp A) : Type := susp.elim PN PS (λa, ua (Pm a)) x protected definition elim_type_on [reducible] (x : susp A) (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) : Type := susp.elim_type PN PS Pm x theorem elim_type_merid (PN : Type) (PS : Type) (Pm : A → PN ≃ PS) (a : A) : transport (susp.elim_type PN PS Pm) (merid a) = Pm a := by rewrite [tr_eq_cast_ap_fn,↑susp.elim_type,elim_merid];apply cast_ua_fn end susp attribute susp.north susp.south [constructor] attribute susp.rec susp.elim [unfold-c 6] [recursor 6] attribute susp.elim_type [unfold-c 5] attribute susp.rec_on susp.elim_on [unfold-c 3] attribute susp.elim_type_on [unfold-c 2] namespace susp open pointed variables {X Y Z : Pointed} definition pointed_susp [instance] [constructor] (X : Type) : pointed (susp X) := pointed.mk north definition Susp [constructor] (X : Type) : Pointed := pointed.mk' (susp X) definition Susp_functor (f : X →* Y) : Susp X →* Susp Y := begin constructor, { intro x, induction x, apply north, apply south, exact merid (f a)}, { reflexivity} end definition Susp_functor_compose (g : Y →* Z) (f : X →* Y) : Susp_functor (g ∘* f) ~* Susp_functor g ∘* Susp_functor f := begin constructor, { intro a, induction a, { reflexivity}, { reflexivity}, { apply pathover_eq, apply hdeg_square, rewrite [▸*,ap_compose' (Susp_functor f),↑Susp_functor,+elim_merid]}}, { reflexivity} end -- adjunction from Coq-HoTT definition loop_susp_unit [constructor] (X : Pointed) : X →* Ω(Susp X) := begin constructor, { intro x, exact merid x ⬝ (merid pt)⁻¹}, { apply con.right_inv}, end definition loop_susp_unit_natural (f : X →* Y) : loop_susp_unit Y ∘* f ~* ap1 (Susp_functor f) ∘* loop_susp_unit X := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, constructor, { intro x', esimp [Susp_functor], symmetry, exact !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ (inverse2 !elim_merid)) }, { rewrite [▸*,idp_con (con.right_inv _)], apply inv_con_eq_of_eq_con, refine _ ⬝ !con.assoc', rewrite inverse2_right_inv, refine _ ⬝ !con.assoc', rewrite [ap_con_right_inv,↑Susp_functor,idp_con_idp,-ap_compose]}, end definition loop_susp_counit [constructor] (X : Pointed) : Susp (Ω X) →* X := begin constructor, { intro x, induction x, exact pt, exact pt, exact a}, { reflexivity}, end definition loop_susp_counit_natural (f : X →* Y) : f ∘* loop_susp_counit X ~* loop_susp_counit Y ∘* (Susp_functor (ap1 f)) := begin induction X with X x, induction Y with Y y, induction f with f pf, esimp at *, induction pf, constructor, { intro x', induction x' with p, { reflexivity}, { reflexivity}, { esimp, apply pathover_eq, apply hdeg_square, xrewrite [ap_compose _ f,ap_compose _ (susp.elim (f x) (f x) (λ (a : f x = f x), a)),▸*, +elim_merid,▸*,idp_con]}}, { reflexivity} end definition loop_susp_counit_unit (X : Pointed) : ap1 (loop_susp_counit X) ∘* loop_susp_unit (Ω X) ~* pid (Ω X) := begin induction X with X x, constructor, { intro p, esimp, refine !idp_con ⬝ (!ap_con ⬝ whisker_left _ !ap_inv) ⬝ (!elim_merid ◾ inverse2 !elim_merid)}, { rewrite [▸*,inverse2_right_inv (elim_merid function.id idp)], refine !con.assoc ⬝ _, xrewrite [ap_con_right_inv (susp.elim x x (λa, a)) (merid idp),idp_con_idp,-ap_compose]} end definition loop_susp_unit_counit (X : Pointed) : loop_susp_counit (Susp X) ∘* Susp_functor (loop_susp_unit X) ~* pid (Susp X) := begin induction X with X x, constructor, { intro x', induction x', { reflexivity}, { exact merid pt}, { apply pathover_eq, xrewrite [▸*, ap_id, ap_compose _ (susp.elim north north (λa, a)), +elim_merid,▸*], apply square_of_eq, exact !idp_con ⬝ !inv_con_cancel_right⁻¹}}, { reflexivity} end definition susp_adjoint_loop (X Y : Pointed) : map₊ (pointed.mk' (susp X)) Y ≃ map₊ X (Ω Y) := begin fapply equiv.MK, { intro f, exact ap1 f ∘* loop_susp_unit X}, { intro g, exact loop_susp_counit Y ∘* Susp_functor g}, { intro g, apply eq_of_phomotopy, esimp, refine !pwhisker_right !ap1_compose ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_susp_unit_natural⁻¹* ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_susp_counit_unit ⬝* _, apply pid_comp}, { intro f, apply eq_of_phomotopy, esimp, refine !pwhisker_left !Susp_functor_compose ⬝* _, refine !passoc⁻¹* ⬝* _, refine !pwhisker_right !loop_susp_counit_natural⁻¹* ⬝* _, refine !passoc ⬝* _, refine !pwhisker_left !loop_susp_unit_counit ⬝* _, apply comp_pid}, end definition susp_adjoint_loop_nat_right (f : Susp X →* Y) (g : Y →* Z) : susp_adjoint_loop X Z (g ∘* f) ~* ap1 g ∘* susp_adjoint_loop X Y f := begin esimp [susp_adjoint_loop], refine _ ⬝* !passoc, apply pwhisker_right, apply ap1_compose end definition susp_adjoint_loop_nat_left (f : Y →* Ω Z) (g : X →* Y) : (susp_adjoint_loop X Z)⁻¹ (f ∘* g) ~* (susp_adjoint_loop Y Z)⁻¹ f ∘* Susp_functor g := begin esimp [susp_adjoint_loop], refine _ ⬝* !passoc⁻¹*, apply pwhisker_left, apply Susp_functor_compose end end susp