Set: pp::colors Set: pp::unicode Assumed: f Error (line: 4, pos: 6) type mismatch at application f 10 ⊤ Function type: Π (A : Type), A → A → A Arguments types: ℕ : Type 10 : ℕ ⊤ : Bool Assumed: g Error (line: 7, pos: 6) unsolved placeholder at term g 10 Assumed: h Error (line: 11, pos: 27) application type mismatch during term elaboration h A x Function type: Π (A : Type), A → A Arguments types: A : Type x : ?M0 Elaborator state #0 ≈ ?M0[lift:0:2] Assumed: eq Error (line: 15, pos: 51) application type mismatch during term elaboration eq C a b Function type: Π (A : Type), A → A → Bool Arguments types: C : Type a : ?M0[lower:5:5 lift:0:3 subst:0 B subst:1 A] b : ?M2[lower:5:5 lift:0:2 subst:0 a subst:1 B subst:2 A] Elaborator state #0 ≈ ?M2[lift:0:2] #0 ≈ ?M0[lift:0:3] Assumed: a Assumed: b Assumed: H Error (line: 20, pos: 18) type mismatch during term elaboration Discharge (λ H1 : _, Conj H1 (Conjunct1 H)) Term after elaboration: Discharge (λ H1 : ?M4, Conj H1 (Conjunct1 H)) Expected type: b Got: ?M4 ⇒ ?M2 Elaborator state ?M2[lift:0:1] ≈ (?M4[lift:0:1]) ∧ a b ≈ if Bool ?M4 ?M2 ⊤ b ≈ if Bool ?M4 ?M2 ⊤ Error (line: 22, pos: 22) type mismatch at application Trans (Refl a) (Refl b) Function type: Π (A : Type U) (a b c : A), (a = b) → (b = c) → (a = c) Arguments types: Bool : Type a : Bool a : Bool b : Bool Refl a : a = a Refl b : b = b Error (line: 24, pos: 6) type mismatch at application f Bool Bool Function type: Π (A : Type), A → A → A Arguments types: Type : Type 1 Bool : Type Bool : Type Error (line: 27, pos: 21) type mismatch at application DisjCases (EM a) (λ H_a : a, H) (λ H_na : ¬ a, NotImp1 (MT H H_na)) Function type: Π (a b c : Bool), (a ∨ b) → (a → c) → (b → c) → c Arguments types: a : Bool ¬ a : Bool a : Bool EM a : a ∨ ¬ a (λ H_a : a, H) : a → ((a ⇒ b) ⇒ a) (λ H_na : ¬ a, NotImp1 (MT H H_na)) : (¬ a) → a