-- Copyright (c) 2014 Jeremy Avigad. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Leonardo de Moura -- algebra.group -- ============= -- Various structures with 1, *, inv, including groups. import logic.core.eq logic.core.connectives import data.unit data.sigma data.prod import algebra.function algebra.binary open eq namespace algebra -- classes for notation -- -------------------- inductive has_mul [class] (A : Type) : Type := mk : (A → A → A) → has_mul A inductive has_one [class] (A : Type) : Type := mk : A → has_one A inductive has_inv [class] (A : Type) : Type := mk : (A → A) → has_inv A definition mul {A : Type} {s : has_mul A} (a b : A) : A := has_mul.rec (fun f, f) s a b definition one {A : Type} {s : has_one A} : A := has_one.rec (fun o, o) s definition inv {A : Type} {s : has_inv A} (a : A) : A := has_inv.rec (fun i, i) s a infix `*` := mul postfix `⁻¹` := inv notation 1 := one -- semigroup -- --------- inductive semigroup [class] (A : Type) : Type := mk : Π mul: A → A → A, (∀a b c : A, (mul (mul a b) c = mul a (mul b c))) → semigroup A namespace semigroup section parameters {A : Type} {s : semigroup A} definition mul (a b : A) : A := semigroup.rec (λmul assoc, mul) s a b definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) := semigroup.rec (λmul assoc, assoc) s a b c end end semigroup section parameters {A : Type} {s : semigroup A} definition semigroup_has_mul [instance] : including A s, has_mul A := has_mul.mk (semigroup.mul) theorem mul_assoc [instance] {a b c : A} : including A s, a * b * c = a * (b * c) := semigroup.assoc end -- comm_semigroup -- -------------- inductive comm_semigroup [class] (A : Type) : Type := mk : Π mul: A → A → A, (∀a b c : A, (mul (mul a b) c = mul a (mul b c))) → (∀a b : A, mul a b = mul b a) → comm_semigroup A namespace comm_semigroup section parameters {A : Type} {s : comm_semigroup A} definition mul (a b : A) : A := comm_semigroup.rec (λmul assoc comm, mul) s a b definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) := comm_semigroup.rec (λmul assoc comm, assoc) s a b c definition comm {a b : A} : mul a b = mul b a := comm_semigroup.rec (λmul assoc comm, comm) s a b end end comm_semigroup section parameters {A : Type} {s : comm_semigroup A} definition comm_semigroup_semigroup [instance] : including A s, semigroup A := semigroup.mk (comm_semigroup.mul) (@comm_semigroup.assoc _ _) theorem mul_comm {a b : A} : including A s, a * b = b * a := comm_semigroup.comm theorem mul_left_comm {a b c : A} : including A s, a * (b * c) = b * (a * c) := binary.left_comm (@mul_comm) (@mul_assoc _ _) a b c end -- monoid -- ------ inductive monoid [class] (A : Type) : Type := mk : Π mul: A → A → A, Π one : A, (∀a b c : A, (mul (mul a b) c = mul a (mul b c))) → (∀a : A, mul a one = a) → (∀a : A, mul one a = a) → monoid A namespace monoid section parameters {A : Type} {s : monoid A} definition mul (a b : A) : A := monoid.rec (λmul one assoc right_id left_id, mul) s a b definition one : A := monoid.rec (λmul one assoc right_id left_id, one) s definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) := monoid.rec (λmul one assoc right_id left_id, assoc) s a b c definition right_id {a : A} : mul a one = a := monoid.rec (λmul one assoc right_id left_id, right_id) s a definition left_id {a : A} : mul one a = a := monoid.rec (λmul one assoc right_id left_id, left_id) s a end end monoid section parameters {A : Type} {s : monoid A} definition monoid_has_one [instance] : including A s, has_one A := has_one.mk (monoid.one) definition monoid_semigroup [instance] : including A s, semigroup A := semigroup.mk (monoid.mul) (@monoid.assoc _ _) theorem mul_right_id {a : A} : including s, a * one = a := monoid.right_id theorem mul_left_id {a : A} : including s, one * a = a := monoid.left_id end -- comm_monoid -- ----------- inductive comm_monoid [class] (A : Type) : Type := mk : Π mul: A → A → A, Π one : A, (∀a b c : A, (mul (mul a b) c = mul a (mul b c))) → (∀a : A, mul a one = a) → (∀a : A, mul one a = a) → (∀a b : A, mul a b = mul b a) → comm_monoid A namespace comm_monoid section parameters {A : Type} {s : comm_monoid A} definition mul (a b : A) : A := comm_monoid.rec (λmul one assoc right_id left_id comm, mul) s a b definition one : A := comm_monoid.rec (λmul one assoc right_id left_id comm, one) s definition assoc {a b c : A} : mul (mul a b) c = mul a (mul b c) := comm_monoid.rec (λmul one assoc right_id left_id comm, assoc) s a b c definition right_id {a : A} : mul a one = a := comm_monoid.rec (λmul one assoc right_id left_id comm, right_id) s a definition left_id {a : A} : mul one a = a := comm_monoid.rec (λmul one assoc right_id left_id comm, left_id) s a definition comm {a b : A} : mul a b = mul b a := comm_monoid.rec (λmul one assoc right_id left_id comm, comm) s a b end end comm_monoid section parameters {A : Type} {s : comm_monoid A} definition comm_monoid_monoid [instance] : including A s, monoid A := monoid.mk (comm_monoid.mul) (comm_monoid.one) (@comm_monoid.assoc _ _) (@comm_monoid.right_id _ _) (@comm_monoid.left_id _ _) definition comm_monoid_comm_semigroup [instance] : including A s, comm_semigroup A := comm_semigroup.mk (comm_monoid.mul) (@comm_monoid.assoc _ _) (@comm_monoid.comm _ _) end -- bundled structures -- ------------------ inductive Semigroup [class] : Type := mk : Π carrier : Type, semigroup carrier → Semigroup namespace Semigroup section parameter (S : Semigroup) definition carrier : Type := Semigroup.rec (λc s, c) S definition struc : semigroup carrier := Semigroup.rec (λc s, s) S end end Semigroup coercion Semigroup.carrier instance Semigroup.struc inductive CommSemigroup [class] : Type := mk : Π carrier : Type, comm_semigroup carrier → CommSemigroup namespace CommSemigroup section parameter (S : CommSemigroup) definition carrier : Type := CommSemigroup.rec (λc s, c) S definition struc : comm_semigroup carrier := CommSemigroup.rec (λc s, s) S end end CommSemigroup coercion CommSemigroup.carrier instance CommSemigroup.struc inductive Monoid [class] : Type := mk : Π carrier : Type, monoid carrier → Monoid namespace Monoid section parameter (S : Monoid) definition carrier : Type := Monoid.rec (λc s, c) S definition struc : monoid carrier := Monoid.rec (λc s, s) S end end Monoid coercion Monoid.carrier instance Monoid.struc inductive CommMonoid : Type := mk : Π carrier : Type, comm_monoid carrier → CommMonoid namespace CommMonoid section parameter (S : CommMonoid) definition carrier : Type := CommMonoid.rec (λc s, c) S definition struc : comm_monoid carrier := CommMonoid.rec (λc s, s) S end end CommMonoid coercion CommMonoid.carrier instance CommMonoid.struc end algebra open algebra section examples theorem test1 {S : Semigroup} (a b c d : S) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : {symm mul_assoc} ... = a * b * (c * d) : mul_assoc theorem test2 {M : CommSemigroup} (a b : M) : a * b = a * b := rfl theorem test3 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := calc a * (b * c) * d = a * b * c * d : {symm mul_assoc} ... = a * b * (c * d) : mul_assoc -- for test4b to work, we need instances at the level of the bundled structures as well definition Monoid_Semigroup [instance] (M : Monoid) : Semigroup := Semigroup.mk (Monoid.carrier M) _ theorem test4 {M : Monoid} (a b c d : M) : a * (b * c) * d = a * b * (c * d) := test1 a b c d theorem test5 {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {mul_right_id} ... = a * (b * c) : mul_assoc theorem test5a {M : Monoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {mul_right_id} ... = a * (b * c) : mul_assoc theorem test5b {A : Type} {M : monoid A} (a b c : A) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {mul_right_id} ... = a * (b * c) : mul_assoc theorem test6 {M : CommMonoid} (a b c : M) : a * 1 * b * c = a * (b * c) := calc a * 1 * b * c = a * b * c : {mul_right_id} ... = a * (b * c) : mul_assoc end examples