/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include #include #include "environment.h" #include "safe_arith.h" #include "type_check.h" #include "exception.h" #include "pp.h" #include "debug.h" namespace lean { /** \brief Implementation of the Lean environment. */ struct environment::imp { // Remark: only named objects are stored in the dictionary. typedef std::unordered_map object_dictionary; typedef std::tuple constraint; // Universe variable management std::vector m_constraints; std::vector m_uvars; // Children environment management std::atomic m_num_children; std::shared_ptr m_parent; // Object management std::vector m_objects; object_dictionary m_object_dictionary; // Expression formatter && locator std::shared_ptr m_formatter; std::shared_ptr m_locator; expr_formatter & get_formatter() { if (m_formatter) { return *m_formatter; } else { // root environments always have a formatter. lean_assert(has_parent()); return m_parent->get_formatter(); } } expr_locator & get_locator() { if (m_locator) { return *m_locator; } else { // root environments always have a locator. lean_assert(has_parent()); return m_parent->get_locator(); } } /** \brief Return true iff this environment has children. \remark If an environment has children than it cannot be updated. That is, it is read-only. */ bool has_children() const { return m_num_children > 0; } void inc_children() { m_num_children++; } void dec_children() { m_num_children--; } /** \brief Return true iff this environment has a parent environment */ bool has_parent() const { return m_parent != nullptr; } /** \brief Return true if u >= v + k is implied by constraints \pre is_uvar(u) && is_uvar(v) */ bool is_implied(level const & u, level const & v, int k) { lean_assert(is_uvar(u) && is_uvar(v)); if (u == v) return k <= 0; else return std::any_of(m_constraints.begin(), m_constraints.end(), [&](constraint const & c) { return std::get<0>(c) == u && std::get<1>(c) == v && std::get<2>(c) >= k; }); } /** \brief Return true iff l1 >= l2 + k by asserted universe constraints. */ bool is_ge(level const & l1, level const & l2, int k) { if (l1 == l2) return k == 0; switch (kind(l2)) { case level_kind::UVar: switch (kind(l1)) { case level_kind::UVar: return is_implied(l1, l2, k); case level_kind::Lift: return is_ge(lift_of(l1), l2, safe_sub(k, lift_offset(l1))); case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); }); } case level_kind::Lift: return is_ge(l1, lift_of(l2), safe_add(k, lift_offset(l2))); case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); }); } lean_unreachable(); return false; } /** \brief Return true iff l1 >= l2 is implied by asserted universe constraints. */ bool is_ge(level const & l1, level const & l2) { if (has_parent()) return m_parent->is_ge(l1, l2); else return is_ge(l1, l2, 0); } /** \brief Add a new universe variable */ level add_var(name const & n) { if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; })) throw exception("invalid universe variable declaration, it has already been declared"); level r(n); m_uvars.push_back(r); return r; } /** \brief Add basic constraint u >= v + d, and all basic constraints implied by transitivity. \pre is_uvar(u) && is_uvar(v) */ void add_constraint(level const & u, level const & v, int d) { lean_assert(is_uvar(u) && is_uvar(v)); if (is_implied(u, v, d)) return; // redundant buffer to_add; for (constraint const & c : m_constraints) { if (std::get<0>(c) == v) { level const & l3 = std::get<1>(c); int u_l3_d = safe_add(d, std::get<2>(c)); if (!is_implied(u, l3, u_l3_d)) to_add.push_back(constraint(u, l3, u_l3_d)); } } m_constraints.push_back(constraint(u, v, d)); for (constraint const & c: to_add) { m_constraints.push_back(c); } } /** \brief Add all basic constraints implied by n >= l + k A basic constraint is a constraint of the form u >= v + k where u and v are universe variables. */ void add_constraints(level const & n, level const & l, int k) { lean_assert(is_uvar(n)); switch (kind(l)) { case level_kind::UVar: add_constraint(n, l, k); return; case level_kind::Lift: add_constraints(n, lift_of(l), safe_add(k, lift_offset(l))); return; case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(n, l1, k); }); return; } lean_unreachable(); } /** \brief Add a new universe variable with constraint n >= l */ level add_uvar(name const & n, level const & l) { if (has_parent()) throw exception("invalid universe declaration, universe variables can only be declared in top-level environments"); if (has_children()) throw exception("invalid universe declaration, environment has children environments"); level r = add_var(n); add_constraints(r, l, 0); return r; } /** \brief Return the universe variable with given name. Throw an exception if the environment and its ancestors do not contain a universe variable named \c n. */ level get_uvar(name const & n) const { if (has_parent()) { return m_parent->get_uvar(n); } else { auto it = std::find_if(m_uvars.begin(), m_uvars.end(), [&](level const & l) { return uvar_name(l) == n; }); if (it == m_uvars.end()) { std::ostringstream s; s << "unknown universe variable '" << n << "'"; throw exception (s.str()); } else { return *it; } } } /** \brief Initialize the set of universe variables with bottom */ void init_uvars() { m_uvars.push_back(level()); } /** \brief Display universe variable constraints */ void display_uvars(std::ostream & out) const { for (constraint const & c : m_constraints) { out << uvar_name(std::get<0>(c)) << " >= " << uvar_name(std::get<1>(c)); if (std::get<2>(c) >= 0) out << " + " << std::get<2>(c); out << "\n"; } } /** \brief Throw exception if environment has children. */ void check_no_children() { if (has_children()) throw exception("invalid object declaration, environment has children environments"); } /** \brief Throw exception if environment or its ancestors already have an object with the given name. */ void check_name_core(name const & n) { if (has_parent()) m_parent->check_name_core(n); if (m_object_dictionary.find(n) != m_object_dictionary.end()) { std::ostringstream s; s << "environment already contains an object with name '" << n << "'"; throw exception (s.str()); } } void check_name(name const & n) { check_no_children(); check_name_core(n); } /** \brief Throw an exception if \c t is not a type or type of \c v is not convertible to \c t. \remark env is the smart pointer of imp. We need it because infer_universe and infer_type expect an environment instead of environment::imp. */ void check_type(name const & n, expr const & t, expr const & v, environment const & env) { infer_universe(t, env); expr v_t = infer_type(v, env); if (!is_convertible(t, v_t, env)) { std::ostringstream buffer; buffer << "type mismatch when defining '" << n << "'\n" << "expected type:\n" << t << "\n" << "given type:\n" << v_t; throw exception(buffer.str()); } } /** \brief Throw exception if it is not a valid new definition */ void check_new_definition(name const & n, expr const & t, expr const & v, environment const & env) { check_name(n); check_type(n, t, v, env); } /** \brief Store new named object inside internal data-structures */ void register_named_object(named_object * new_obj) { m_objects.push_back(new_obj); m_object_dictionary.insert(std::make_pair(new_obj->get_name(), new_obj)); } /** \brief Add new definition. */ void add_definition(name const & n, expr const & t, expr const & v, bool opaque, environment const & env) { check_new_definition(n, t, v, env); register_named_object(new definition(n, t, v, opaque)); } /** \brief Add new definition. The type of the new definition is the type of \c v. */ void add_definition(name const & n, expr const & v, bool opaque, environment const & env) { check_name(n); expr v_t = infer_type(v, env); register_named_object(new definition(n, v_t, v, opaque)); } /** \brief Add new theorem. */ void add_theorem(name const & n, expr const & t, expr const & v, environment const & env) { check_new_definition(n, t, v, env); register_named_object(new theorem(n, t, v)); } /** \brief Add new axiom. */ void add_axiom(name const & n, expr const & t, environment const & env) { check_name(n); infer_universe(t, env); register_named_object(new axiom(n, t)); } /** \brief Add new variable. */ void add_var(name const & n, expr const & t, environment const & env) { check_name(n); infer_universe(t, env); register_named_object(new variable(n, t)); } /** \brief Return the object named \c n in the environment or its ancestors. Return nullptr if there is not object with the given name. */ named_object const * get_object_ptr(name const & n) const { auto it = m_object_dictionary.find(n); if (it == m_object_dictionary.end()) { if (has_parent()) return m_parent->get_object_ptr(n); else return nullptr; } else { return it->second; } } named_object const & get_object(name const & n) const { named_object const * ptr = get_object_ptr(n); if (ptr) { return *ptr; } else { std::ostringstream s; s << "unknown object '" << n << "'"; throw exception (s.str()); } } void display_objects(std::ostream & out, environment const & env) const { for (object const * obj : m_objects) { out << obj->pp(env) << "\n"; } } /** \brief Display universal variable constraints and objects stored in this environment and its parents. */ void display(std::ostream & out, environment const & env) const { if (has_parent()) m_parent->display(out, env); display_uvars(out); display_objects(out, env); } imp(): m_num_children(0) { init_uvars(); m_formatter = mk_simple_expr_formatter(); m_locator = mk_dummy_expr_locator(); } explicit imp(std::shared_ptr const & parent): m_num_children(0), m_parent(parent) { m_parent->inc_children(); } ~imp() { if (m_parent) m_parent->dec_children(); std::for_each(m_objects.begin(), m_objects.end(), [](object * obj) { delete obj; }); } }; environment::environment(): m_imp(new imp()) { } environment::environment(imp * new_ptr): m_imp(new_ptr) { } environment::environment(std::shared_ptr const & ptr): m_imp(ptr) { } environment::~environment() { } void environment::set_formatter(std::shared_ptr const & formatter) { lean_assert(formatter); m_imp->m_formatter = formatter; } expr_formatter & environment::get_formatter() const { return m_imp->get_formatter(); } void environment::set_locator(std::shared_ptr const & locator) { lean_assert(locator); m_imp->m_locator = locator; } expr_locator & environment::get_locator() const { return m_imp->get_locator(); } environment environment::mk_child() const { return environment(new imp(m_imp)); } bool environment::has_children() const { return m_imp->has_children(); } bool environment::has_parent() const { return m_imp->has_parent(); } environment environment::parent() const { lean_assert(has_parent()); return environment(m_imp->m_parent); } level environment::add_uvar(name const & n, level const & l) { return m_imp->add_uvar(n, l); } bool environment::is_ge(level const & l1, level const & l2) const { return m_imp->is_ge(l1, l2); } void environment::display_uvars(std::ostream & out) const { m_imp->display_uvars(out); } level environment::get_uvar(name const & n) const { return m_imp->get_uvar(n); } void environment::add_definition(name const & n, expr const & t, expr const & v, bool opaque) { m_imp->add_definition(n, t, v, opaque, *this); } void environment::add_theorem(name const & n, expr const & t, expr const & v) { m_imp->add_theorem(n, t, v, *this); } void environment::add_definition(name const & n, expr const & v, bool opaque) { m_imp->add_definition(n, v, opaque, *this); } void environment::add_axiom(name const & n, expr const & t) { m_imp->add_axiom(n, t, *this); } void environment::add_var(name const & n, expr const & t) { m_imp->add_var(n, t, *this); } named_object const & environment::get_object(name const & n) const { return m_imp->get_object(n); } named_object const * environment::get_object_ptr(name const & n) const { return m_imp->get_object_ptr(n); } unsigned environment::get_num_objects() const { return m_imp->m_objects.size(); } object const & environment::get_object(unsigned i) const { return *(m_imp->m_objects[i]); } void environment::display_objects(std::ostream & out) const { m_imp->display_objects(out, *this); } void environment::display(std::ostream & out) const { m_imp->display(out, *this); } }