definition Prop [inline] := Type.{0} definition false := ∀x : Prop, x check false theorem false_elim (C : Prop) (H : false) : C := H C definition eq {A : Type} (a b : A) := ∀ {P : A → Prop}, P a → P b check eq infix `=`:50 := eq theorem refl {A : Type} (a : A) : a = a := λ P H, H theorem subst {A : Type} {P : A -> Prop} {a b : A} (H1 : a = b) (H2 : P a) : P b := @H1 P H2