-- Correct version check let bool : Type.{1} := Type.{0}, and (p q : bool) : bool := ∀ c : bool, (p → q → c) → c, infixl `∧` 25 := and, and_intro (p q : bool) (H1 : p) (H2 : q) : p ∧ q := λ (c : bool) (H : p → q → c), H H1 H2, and_elim_left (p q : bool) (H : p ∧ q) : p := H p (λ (H1 : p) (H2 : q), H1), and_elim_right (p q : bool) (H : p ∧ q) : q := H q (λ (H1 : p) (H2 : q), H2) in and_intro check let bool : Type.{1} := Type.{0}, and (p q : bool) : bool := ∀ c : bool, (p → q → c) → c, infixl `∧` 25 := and, and_intro (p q : bool) (H1 : p) (H2 : q) : q ∧ p := λ (c : bool) (H : p → q → c), H H1 H2, and_elim_left (p q : bool) (H : p ∧ q) : p := H p (λ (H1 : p) (H2 : q), H1), and_elim_right (p q : bool) (H : p ∧ q) : q := H q (λ (H1 : p) (H2 : q), H2) in and_intro