/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad -/ prelude import init.datatypes notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r structure has_zero [class] (A : Type) := (zero : A) structure has_one [class] (A : Type) := (one : A) structure has_add [class] (A : Type) := (add : A → A → A) structure has_mul [class] (A : Type) := (mul : A → A → A) structure has_inv [class] (A : Type) := (inv : A → A) structure has_neg [class] (A : Type) := (neg : A → A) structure has_sub [class] (A : Type) := (sub : A → A → A) structure has_division [class] (A : Type) := (division : A → A → A) structure has_divide [class] (A : Type) := (divide : A → A → A) structure has_modulo [class] (A : Type) := (modulo : A → A → A) structure has_dvd [class] (A : Type) := (dvd : A → A → Prop) structure has_le [class] (A : Type) := (le : A → A → Prop) structure has_lt [class] (A : Type) := (lt : A → A → Prop) definition zero {A : Type} [s : has_zero A] : A := has_zero.zero A definition one {A : Type} [s : has_one A] : A := has_one.one A definition add {A : Type} [s : has_add A] : A → A → A := has_add.add definition mul {A : Type} [s : has_mul A] : A → A → A := has_mul.mul definition sub {A : Type} [s : has_sub A] : A → A → A := has_sub.sub definition division {A : Type} [s : has_division A] : A → A → A := has_division.division definition divide {A : Type} [s : has_divide A] : A → A → A := has_divide.divide definition modulo {A : Type} [s : has_modulo A] : A → A → A := has_modulo.modulo definition dvd {A : Type} [s : has_dvd A] : A → A → Prop := has_dvd.dvd definition neg {A : Type} [s : has_neg A] : A → A := has_neg.neg definition inv {A : Type} [s : has_inv A] : A → A := has_inv.inv definition le {A : Type} [s : has_le A] : A → A → Prop := has_le.le definition lt {A : Type} [s : has_lt A] : A → A → Prop := has_lt.lt definition ge [reducible] {A : Type} [s : has_le A] (a b : A) : Prop := le b a definition gt [reducible] {A : Type} [s : has_lt A] (a b : A) : Prop := lt b a definition bit0 {A : Type} [s : has_add A] (a : A) : A := add a a definition bit1 {A : Type} [s₁ : has_one A] [s₂ : has_add A] (a : A) : A := add (bit0 a) one definition num_has_zero [reducible] [instance] : has_zero num := has_zero.mk num.zero definition num_has_one [reducible] [instance] : has_one num := has_one.mk (num.pos pos_num.one) definition pos_num_has_one [reducible] [instance] : has_one pos_num := has_one.mk (pos_num.one) namespace pos_num open bool definition is_one (a : pos_num) : bool := pos_num.rec_on a tt (λn r, ff) (λn r, ff) definition pred (a : pos_num) : pos_num := pos_num.rec_on a one (λn r, bit0 n) (λn r, bool.rec_on (is_one n) (bit1 r) one) definition size (a : pos_num) : pos_num := pos_num.rec_on a one (λn r, succ r) (λn r, succ r) definition add (a b : pos_num) : pos_num := pos_num.rec_on a succ (λn f b, pos_num.rec_on b (succ (bit1 n)) (λm r, succ (bit1 (f m))) (λm r, bit1 (f m))) (λn f b, pos_num.rec_on b (bit1 n) (λm r, bit1 (f m)) (λm r, bit0 (f m))) b end pos_num definition pos_num_has_add [reducible] [instance] : has_add pos_num := has_add.mk pos_num.add namespace num open pos_num definition add (a b : num) : num := num.rec_on a b (λpa, num.rec_on b (pos pa) (λpb, pos (pos_num.add pa pb))) end num definition num_has_add [reducible] [instance] : has_add num := has_add.mk num.add definition std.priority.default : num := 1000 definition std.priority.max : num := 4294967295 namespace nat protected definition prio := num.add std.priority.default 100 protected definition add (a b : nat) : nat := nat.rec a (λ b₁ r, succ r) b definition nat_has_zero [reducible] [instance] : has_zero nat := has_zero.mk nat.zero definition nat_has_one [reducible] [instance] : has_one nat := has_one.mk (nat.succ (nat.zero)) definition nat_has_add [reducible] [instance] [priority nat.prio] : has_add nat := has_add.mk nat.add definition of_num (n : num) : nat := num.rec zero (λ n, pos_num.rec (succ zero) (λ n r, add (add r r) (succ zero)) (λ n r, add r r) n) n end nat /- Global declarations of right binding strength If a module reassigns these, it will be incompatible with other modules that adhere to these conventions. When hovering over a symbol, use "C-c C-k" to see how to input it. -/ definition std.prec.max : num := 1024 -- the strength of application, identifiers, (, [, etc. definition std.prec.arrow : num := 25 /- The next definition is "max + 10". It can be used e.g. for postfix operations that should be stronger than application. -/ definition std.prec.max_plus := num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ (num.succ std.prec.max))))))))) /- Logical operations and relations -/ reserve prefix `¬`:40 reserve prefix `~`:40 reserve infixr ` ∧ `:35 reserve infixr ` /\ `:35 reserve infixr ` \/ `:30 reserve infixr ` ∨ `:30 reserve infix ` <-> `:20 reserve infix ` ↔ `:20 reserve infix ` = `:50 reserve infix ` ≠ `:50 reserve infix ` ≈ `:50 reserve infix ` ~ `:50 reserve infix ` ≡ `:50 reserve infixr ` ∘ `:60 -- input with \comp reserve postfix `⁻¹`:std.prec.max_plus -- input with \sy or \-1 or \inv reserve infixl ` ⬝ `:75 reserve infixr ` ▸ `:75 reserve infixr ` ▹ `:75 /- types and type constructors -/ reserve infixl ` ⊎ `:25 reserve infixl ` × `:30 /- arithmetic operations -/ reserve infixl ` + `:65 reserve infixl ` - `:65 reserve infixl ` * `:70 reserve infixl ` div `:70 reserve infixl ` mod `:70 reserve infixl ` / `:70 reserve prefix `-`:100 reserve infix ` ^ `:80 reserve infix ` <= `:50 reserve infix ` ≤ `:50 reserve infix ` < `:50 reserve infix ` >= `:50 reserve infix ` ≥ `:50 reserve infix ` > `:50 /- boolean operations -/ reserve infixl ` && `:70 reserve infixl ` || `:65 /- set operations -/ reserve infix ` ∈ `:50 reserve infix ` ∉ `:50 reserve infixl ` ∩ `:70 reserve infixl ` ∪ `:65 reserve infix ` ⊆ `:50 reserve infix ` ⊇ `:50 /- other symbols -/ reserve infix ` ∣ `:50 reserve infixl ` ++ `:65 reserve infixr ` :: `:65 infix + := add infix * := mul infix - := sub infix / := division infix div := divide infix ∣ := dvd infix mod := modulo prefix - := neg postfix ⁻¹ := inv infix ≤ := le infix ≥ := ge infix < := lt infix > := gt notation [parsing_only] x ` +[`:65 A:0 `] `:0 y:65 := @add A _ x y notation [parsing_only] x ` -[`:65 A:0 `] `:0 y:65 := @sub A _ x y notation [parsing_only] x ` *[`:70 A:0 `] `:0 y:70 := @mul A _ x y notation [parsing_only] x ` /[`:70 A:0 `] `:0 y:70 := @division A _ x y notation [parsing_only] x ` div[`:70 A:0 `] `:0 y:70 := @divide A _ x y notation [parsing_only] x ` mod[`:70 A:0 `] `:0 y:70 := @modulo A _ x y notation [parsing_only] x ` ≤[`:50 A:0 `] `:0 y:50 := @le A _ x y notation [parsing_only] x ` ≥[`:50 A:0 `] `:0 y:50 := @ge A _ x y notation [parsing_only] x ` <[`:50 A:0 `] `:0 y:50 := @lt A _ x y notation [parsing_only] x ` >[`:50 A:0 `] `:0 y:50 := @gt A _ x y