import logic open tactic notation `(` h `|` r:(foldl `|` (e r, tactic.or_else r e) h) `)` := r definition basic_tac : tactic := repeat (apply @and.intro | assumption) set_begin_end_tactic basic_tac -- basic_tac is automatically applied to each element of a proof-qed block theorem tst (a b : Prop) (H : ¬ a ∨ ¬ b) (Hb : b) : ¬ a ∧ b := begin assume Ha, or.elim H (assume Hna, @absurd _ false Ha Hna) (assume Hnb, @absurd _ false Hb Hnb) end