import logic open tactic notation `(` h `|` r:(foldl `|` (e r, tactic.or_else r e) h) `)` := r infixl `;`:15 := tactic.and_then definition my_tac1 := apply @eq.refl definition my_tac2 := repeat (apply @and.intro; assumption) tactic_hint my_tac1 tactic_hint my_tac2 theorem T1 {A : Type.{2}} (a : A) : a = a := _ theorem T2 {a b c : Prop} (Ha : a) (Hb : b) (Hc : c) : a ∧ b ∧ c := _ definition my_tac3 := fixpoint (λ f, (apply @or.intro_left; f | apply @or.intro_right; f | assumption)) tactic_hint my_tac3 theorem T3 {a b c : Prop} (Hb : b) : a ∨ b ∨ c := _