import kernel import macros variable Nat : Type alias ℕ : Nat namespace Nat builtin numeral builtin add : Nat → Nat → Nat infixl 65 + : add builtin mul : Nat → Nat → Nat infixl 70 * : mul builtin le : Nat → Nat → Bool infix 50 <= : le infix 50 ≤ : le definition ge (a b : Nat) := b ≤ a infix 50 >= : ge infix 50 ≥ : ge definition lt (a b : Nat) := a + 1 ≤ b infix 50 < : lt definition gt (a b : Nat) := b < a infix 50 > : gt definition id (a : Nat) := a notation 55 | _ | : id axiom succ_nz (a : Nat) : a + 1 ≠ 0 axiom succ_inj {a b : Nat} (H : a + 1 = b + 1) : a = b axiom add_zeror (a : Nat) : a + 0 = a axiom add_succr (a b : Nat) : a + (b + 1) = (a + b) + 1 axiom mul_zeror (a : Nat) : a * 0 = 0 axiom mul_succr (a b : Nat) : a * (b + 1) = a * b + a axiom le_def (a b : Nat) : a ≤ b ↔ ∃ c, a + c = b axiom induction {P : Nat → Bool} (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : ∀ a, P a theorem induction_on {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : ∀ (n : Nat) (iH : P n), P (n + 1)) : P a := induction H1 H2 a theorem pred_nz {a : Nat} : a ≠ 0 → ∃ b, b + 1 = a := induction_on a (λ H : 0 ≠ 0, false_elim (∃ b, b + 1 = 0) H) (λ (n : Nat) (iH : n ≠ 0 → ∃ b, b + 1 = n) (H : n + 1 ≠ 0), or_elim (em (n = 0)) (λ Heq0 : n = 0, exists_intro 0 (calc 0 + 1 = n + 1 : { symm Heq0 })) (λ Hne0 : n ≠ 0, obtain (w : Nat) (Hw : w + 1 = n), from (iH Hne0), exists_intro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw }))) theorem discriminate {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : ∀ n, a = n + 1 → B) : B := or_elim (em (a = 0)) (λ Heq0 : a = 0, H1 Heq0) (λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred_nz Hne0), H2 w (symm Hw)) theorem add_zerol (a : Nat) : 0 + a = a := induction_on a (have 0 + 0 = 0 : trivial) (λ (n : Nat) (iH : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : add_succr 0 n ... = n + 1 : { iH }) theorem add_succl (a b : Nat) : (a + 1) + b = (a + b) + 1 := induction_on b (calc (a + 1) + 0 = a + 1 : add_zeror (a + 1) ... = (a + 0) + 1 : { symm (add_zeror a) }) (λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : add_succr (a + 1) n ... = ((a + n) + 1) + 1 : { iH } ... = (a + (n + 1)) + 1 : { have (a + n) + 1 = a + (n + 1) : symm (add_succr a n) }) theorem add_comm (a b : Nat) : a + b = b + a := induction_on b (calc a + 0 = a : add_zeror a ... = 0 + a : symm (add_zerol a)) (λ (n : Nat) (iH : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : add_succr a n ... = (n + a) + 1 : { iH } ... = (n + 1) + a : symm (add_succl n a)) theorem add_assoc (a b c : Nat) : (a + b) + c = a + (b + c) := symm (induction_on a (calc 0 + (b + c) = b + c : add_zerol (b + c) ... = (0 + b) + c : { symm (add_zerol b) }) (λ (n : Nat) (iH : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : add_succl n (b + c) ... = ((n + b) + c) + 1 : { iH } ... = ((n + b) + 1) + c : symm (add_succl (n + b) c) ... = ((n + 1) + b) + c : { have (n + b) + 1 = (n + 1) + b : symm (add_succl n b) })) theorem mul_zerol (a : Nat) : 0 * a = 0 := induction_on a (have 0 * 0 = 0 : trivial) (λ (n : Nat) (iH : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : mul_succr 0 n ... = 0 + 0 : { iH } ... = 0 : trivial) theorem mul_succl (a b : Nat) : (a + 1) * b = a * b + b := induction_on b (calc (a + 1) * 0 = 0 : mul_zeror (a + 1) ... = a * 0 : symm (mul_zeror a) ... = a * 0 + 0 : symm (add_zeror (a * 0))) (λ (n : Nat) (iH : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : mul_succr (a + 1) n ... = a * n + n + (a + 1) : { iH } ... = a * n + n + a + 1 : symm (add_assoc (a * n + n) a 1) ... = a * n + (n + a) + 1 : { have a * n + n + a = a * n + (n + a) : add_assoc (a * n) n a } ... = a * n + (a + n) + 1 : { add_comm n a } ... = a * n + a + n + 1 : { symm (add_assoc (a * n) a n) } ... = a * (n + 1) + n + 1 : { symm (mul_succr a n) } ... = a * (n + 1) + (n + 1) : add_assoc (a * (n + 1)) n 1) theorem mul_onel (a : Nat) : 1 * a = a := induction_on a (have 1 * 0 = 0 : trivial) (λ (n : Nat) (iH : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : mul_succr 1 n ... = n + 1 : { iH }) theorem mul_oner (a : Nat) : a * 1 = a := induction_on a (have 0 * 1 = 0 : trivial) (λ (n : Nat) (iH : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : mul_succl n 1 ... = n + 1 : { iH }) theorem mul_comm (a b : Nat) : a * b = b * a := induction_on b (calc a * 0 = 0 : mul_zeror a ... = 0 * a : symm (mul_zerol a)) (λ (n : Nat) (iH : a * n = n * a), calc a * (n + 1) = a * n + a : mul_succr a n ... = n * a + a : { iH } ... = (n + 1) * a : symm (mul_succl n a)) theorem distributer (a b c : Nat) : a * (b + c) = a * b + a * c := induction_on a (calc 0 * (b + c) = 0 : mul_zerol (b + c) ... = 0 + 0 : trivial ... = 0 * b + 0 : { symm (mul_zerol b) } ... = 0 * b + 0 * c : { symm (mul_zerol c) }) (λ (n : Nat) (iH : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : mul_succl n (b + c) ... = n * b + n * c + (b + c) : { iH } ... = n * b + n * c + b + c : symm (add_assoc (n * b + n * c) b c) ... = n * b + (n * c + b) + c : { add_assoc (n * b) (n * c) b } ... = n * b + (b + n * c) + c : { add_comm (n * c) b } ... = n * b + b + n * c + c : { symm (add_assoc (n * b) b (n * c)) } ... = (n + 1) * b + n * c + c : { symm (mul_succl n b) } ... = (n + 1) * b + (n * c + c) : add_assoc ((n + 1) * b) (n * c) c ... = (n + 1) * b + (n + 1) * c : { symm (mul_succl n c) }) theorem distributel (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : mul_comm (a + b) c ... = c * a + c * b : distributer c a b ... = a * c + c * b : { mul_comm c a } ... = a * c + b * c : { mul_comm c b } theorem mul_assoc (a b c : Nat) : (a * b) * c = a * (b * c) := symm (induction_on a (calc 0 * (b * c) = 0 : mul_zerol (b * c) ... = 0 * c : symm (mul_zerol c) ... = (0 * b) * c : { symm (mul_zerol b) }) (λ (n : Nat) (iH : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul_succl n (b * c) ... = n * b * c + (b * c) : { iH } ... = (n * b + b) * c : symm (distributel (n * b) b c) ... = (n + 1) * b * c : { symm (mul_succl n b) })) theorem add_left_comm (a b c : Nat) : a + (b + c) = b + (a + c) := left_comm add_comm add_assoc a b c theorem mul_left_comm (a b c : Nat) : a * (b * c) = b * (a * c) := left_comm mul_comm mul_assoc a b c theorem add_injr {a b c : Nat} : a + b = a + c → b = c := induction_on a (λ H : 0 + b = 0 + c, calc b = 0 + b : symm (add_zerol b) ... = 0 + c : H ... = c : add_zerol c) (λ (n : Nat) (iH : n + b = n + c → b = c) (H : n + 1 + b = n + 1 + c), let L1 : n + b + 1 = n + c + 1 := (calc n + b + 1 = n + (b + 1) : add_assoc n b 1 ... = n + (1 + b) : { add_comm b 1 } ... = n + 1 + b : symm (add_assoc n 1 b) ... = n + 1 + c : H ... = n + (1 + c) : add_assoc n 1 c ... = n + (c + 1) : { add_comm 1 c } ... = n + c + 1 : symm (add_assoc n c 1)), L2 : n + b = n + c := succ_inj L1 in iH L2) theorem add_injl {a b c : Nat} (H : a + b = c + b) : a = c := add_injr (calc b + a = a + b : add_comm _ _ ... = c + b : H ... = b + c : add_comm _ _) theorem add_eqz {a b : Nat} (H : a + b = 0) : a = 0 := discriminate (λ H1 : a = 0, H1) (λ (n : Nat) (H1 : a = n + 1), absurd_elim (a = 0) H (calc a + b = n + 1 + b : { H1 } ... = n + (1 + b) : add_assoc n 1 b ... = n + (b + 1) : { add_comm 1 b } ... = n + b + 1 : symm (add_assoc n b 1) ... ≠ 0 : succ_nz (n + b))) theorem le_intro {a b c : Nat} (H : a + c = b) : a ≤ b := (symm (le_def a b)) ◂ (have (∃ x, a + x = b) : exists_intro c H) theorem le_elim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b := (le_def a b) ◂ H theorem le_refl (a : Nat) : a ≤ a := le_intro (add_zeror a) theorem le_zero (a : Nat) : 0 ≤ a := le_intro (add_zerol a) theorem le_trans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1), obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le_elim H2), le_intro (calc a + (w1 + w2) = a + w1 + w2 : symm (add_assoc a w1 w2) ... = b + w2 : { Hw1 } ... = c : Hw2) theorem le_add {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c := obtain (w : Nat) (Hw : a + w = b), from (le_elim H), le_intro (calc a + c + w = a + (c + w) : add_assoc a c w ... = a + (w + c) : { add_comm c w } ... = a + w + c : symm (add_assoc a w c) ... = b + c : { Hw }) theorem le_antisym {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1), obtain (w2 : Nat) (Hw2 : b + w2 = a), from (le_elim H2), let L1 : w1 + w2 = 0 := add_injr (calc a + (w1 + w2) = a + w1 + w2 : { symm (add_assoc a w1 w2) } ... = b + w2 : { Hw1 } ... = a : Hw2 ... = a + 0 : symm (add_zeror a)), L2 : w1 = 0 := add_eqz L1 in calc a = a + 0 : symm (add_zeror a) ... = a + w1 : { symm L2 } ... = b : Hw1 theorem not_lt_0 (a : Nat) : ¬ a < 0 := not_intro (λ H : a + 1 ≤ 0, obtain (w : Nat) (Hw1 : a + 1 + w = 0), from (le_elim H), absurd (calc a + w + 1 = a + (w + 1) : add_assoc _ _ _ ... = a + (1 + w) : { add_comm _ _ } ... = a + 1 + w : symm (add_assoc _ _ _) ... = 0 : Hw1) (succ_nz (a + w))) theorem lt_intro {a b c : Nat} (H : a + 1 + c = b) : a < b := le_intro H theorem lt_elim {a b : Nat} (H : a < b) : ∃ x, a + 1 + x = b := le_elim H theorem lt_le {a b : Nat} (H : a < b) : a ≤ b := obtain (w : Nat) (Hw : a + 1 + w = b), from (le_elim H), le_intro (calc a + (1 + w) = a + 1 + w : symm (add_assoc _ _ _) ... = b : Hw) theorem lt_ne {a b : Nat} (H : a < b) : a ≠ b := not_intro (λ H1 : a = b, obtain (w : Nat) (Hw : a + 1 + w = b), from (lt_elim H), absurd (calc w + 1 = 1 + w : add_comm _ _ ... = 0 : add_injr (calc b + (1 + w) = b + 1 + w : symm (add_assoc b 1 w) ... = a + 1 + w : { symm H1 } ... = b : Hw ... = b + 0 : symm (add_zeror b))) (succ_nz w)) theorem lt_nrefl (a : Nat) : ¬ a < a := not_intro (λ H : a < a, absurd (refl a) (lt_ne H)) theorem lt_trans {a b c : Nat} (H1 : a < b) (H2 : b < c) : a < c := obtain (w1 : Nat) (Hw1 : a + 1 + w1 = b), from (lt_elim H1), obtain (w2 : Nat) (Hw2 : b + 1 + w2 = c), from (lt_elim H2), lt_intro (calc a + 1 + (w1 + 1 + w2) = a + 1 + (w1 + (1 + w2)) : { add_assoc w1 1 w2 } ... = (a + 1 + w1) + (1 + w2) : symm (add_assoc _ _ _) ... = b + (1 + w2) : { Hw1 } ... = b + 1 + w2 : symm (add_assoc _ _ _) ... = c : Hw2) theorem lt_le_trans {a b c : Nat} (H1 : a < b) (H2 : b ≤ c) : a < c := obtain (w1 : Nat) (Hw1 : a + 1 + w1 = b), from (lt_elim H1), obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le_elim H2), lt_intro (calc a + 1 + (w1 + w2) = a + 1 + w1 + w2 : symm (add_assoc _ _ _) ... = b + w2 : { Hw1 } ... = c : Hw2) theorem le_lt_trans {a b c : Nat} (H1 : a ≤ b) (H2 : b < c) : a < c := obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le_elim H1), obtain (w2 : Nat) (Hw2 : b + 1 + w2 = c), from (lt_elim H2), lt_intro (calc a + 1 + (w1 + w2) = a + 1 + w1 + w2 : symm (add_assoc _ _ _) ... = a + (1 + w1) + w2 : { add_assoc a 1 w1 } ... = a + (w1 + 1) + w2 : { add_comm 1 w1 } ... = a + w1 + 1 + w2 : { symm (add_assoc a w1 1) } ... = b + 1 + w2 : { Hw1 } ... = c : Hw2) theorem ne_lt_succ {a b : Nat} (H1 : a ≠ b) (H2 : a < b + 1) : a < b := obtain (w : Nat) (Hw : a + 1 + w = b + 1), from (lt_elim H2), let L : a + w = b := add_injl (calc a + w + 1 = a + (w + 1) : add_assoc _ _ _ ... = a + (1 + w) : { add_comm _ _ } ... = a + 1 + w : symm (add_assoc _ _ _) ... = b + 1 : Hw) in discriminate (λ Hz : w = 0, absurd_elim (a < b) (calc a = a + 0 : symm (add_zeror _) ... = a + w : { symm Hz } ... = b : L) H1) (λ (p : Nat) (Hp : w = p + 1), lt_intro (calc a + 1 + p = a + (1 + p) : add_assoc _ _ _ ... = a + (p + 1) : { add_comm _ _ } ... = a + w : { symm Hp } ... = b : L)) theorem strong_induction {P : Nat → Bool} (H : ∀ n, (∀ m, m < n → P m) → P n) : ∀ a, P a := take a, let stronger : P a ∧ ∀ m, m < a → P m := -- we prove a stronger result by regular induction on a induction_on a (have P 0 ∧ ∀ m, m < 0 → P m : let c2 : ∀ m, m < 0 → P m := λ (m : Nat) (Hlt : m < 0), absurd_elim (P m) Hlt (not_lt_0 m), c1 : P 0 := H 0 c2 in and_intro c1 c2) (λ (n : Nat) (iH : P n ∧ ∀ m, m < n → P m), have P (n + 1) ∧ ∀ m, m < n + 1 → P m : let iH1 : P n := and_eliml iH, iH2 : ∀ m, m < n → P m := and_elimr iH, c2 : ∀ m, m < n + 1 → P m := λ (m : Nat) (Hlt : m < n + 1), or_elim (em (m = n)) (λ Heq : m = n, subst iH1 (symm Heq)) (λ Hne : m ≠ n, iH2 m (ne_lt_succ Hne Hlt)), c1 : P (n + 1) := H (n + 1) c2 in and_intro c1 c2) in and_eliml stronger set_opaque add true set_opaque mul true set_opaque le true set_opaque id true set_opaque ge true set_opaque lt true set_opaque gt true set_opaque id true end