/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.finset Author: Leonardo de Moura Finite sets -/ import data.nat data.list.perm data.subtype algebra.binary algebra.function logic.identities open nat quot list subtype binary function open [declarations] perm definition nodup_list (A : Type) := {l : list A | nodup l} variable {A : Type} definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A := tag l n definition to_nodup_list [h : decidable_eq A] (l : list A) : nodup_list A := @to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l) namespace finset private definition eqv (l₁ l₂ : nodup_list A) := perm (elt_of l₁) (elt_of l₂) local infix ~ := eqv private definition eqv.refl (l : nodup_list A) : l ~ l := !perm.refl private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ := assume p, perm.symm p private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ := assume p₁ p₂, perm.trans p₁ p₂ definition nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) := setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A)) definition finset (A : Type) : Type := quot (nodup_list_setoid A) definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A := ⟦to_nodup_list_of_nodup n⟧ definition to_finset [h : decidable_eq A] (l : list A) : finset A := ⟦to_nodup_list l⟧ definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) := λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂ (λ l₁ l₂, match decidable_perm (elt_of l₁) (elt_of l₂) with | decidable.inl e := decidable.inl (quot.sound e) | decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n) end) definition mem (a : A) (s : finset A) : Prop := quot.lift_on s (λ l, a ∈ elt_of l) (λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro (λ ainl₁, mem_perm e ainl₁) (λ ainl₂, mem_perm (perm.symm e) ainl₂))) infix `∈` := mem notation a ∉ b := ¬ mem a b definition mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ := λ ainl, ainl definition mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l := λ ainl, ainl definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) := λ a s, quot.rec_on_subsingleton s (λ l, match list.decidable_mem a (elt_of l) with | decidable.inl p := decidable.inl (mem_of_mem_list p) | decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n) end) theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l := λ ainl, mem_erase_dup ainl theorem mem_to_finset_of_nodub {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n := λ ainl, ainl /- extensionality -/ theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e)) /- empty -/ definition empty : finset A := to_finset_of_nodup [] nodup_nil notation `∅` := !empty theorem not_mem_empty (a : A) : a ∉ ∅ := λ aine : a ∈ ∅, aine /- card -/ definition card (s : finset A) : nat := quot.lift_on s (λ l, length (elt_of l)) (λ l₁ l₂ p, length_eq_length_of_perm p) theorem card_empty : card (@empty A) = 0 := rfl /- insert -/ section insert variable [h : decidable_eq A] include h definition insert (a : A) (s : finset A) : finset A := quot.lift_on s (λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l))) (λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p)) theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s := quot.induction_on s (λ l : nodup_list A, mem_to_finset_of_nodub _ !list.mem_insert) theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s := quot.induction_on s (λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodub _ (list.mem_insert_of_mem _ ainl)) theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s := quot.induction_on s (λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl) theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 := quot.induction_on s (λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl) end insert /- erase -/ section erase variable [h : decidable_eq A] include h definition erase (a : A) (s : finset A) : finset A := quot.lift_on s (λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l))) (λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p)) theorem mem_erase (a : A) (s : finset A) : a ∉ erase a s := quot.induction_on s (λ l, list.mem_erase_of_nodup _ (has_property l)) theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) := quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl) theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s := quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl) end erase /- union -/ section union variable [h : decidable_eq A] include h definition union (s₁ s₂ : finset A) : finset A := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂)) (nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂))) (λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂)) notation s₁ ∪ s₂ := union s₁ s₂ theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁) theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂) theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂) theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) := propext (iff.intro (λ h, mem_or_mem_of_mem_union h) (λ d, or.elim d (λ i, mem_union_left _ i) (λ i, mem_union_right _ i))) theorem union.comm (s₁ s₂ : finset A) : s₁ ∪ s₂ = s₂ ∪ s₁ := ext (λ a, by rewrite [*mem_union_eq]; exact or.comm) theorem union.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc) theorem union_self (s : finset A) : s ∪ s = s := ext (λ a, iff.intro (λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i)) (λ i, mem_union_left _ i)) theorem union_empty (s : finset A) : s ∪ ∅ = s := ext (λ a, iff.intro (λ ain : a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, absurd i !not_mem_empty)) (λ i : a ∈ s, mem_union_left _ i)) theorem empty_union (s : finset A) : ∅ ∪ s = s := calc ∅ ∪ s = s ∪ ∅ : union.comm ... = s : union_empty end union /- acc -/ section acc variable {B : Type} definition acc (f : B → A → B) (rcomm : ∀ b a₁ a₂, f (f b a₁) a₂ = f (f b a₂) a₁) (b : B) (s : finset A) : B := quot.lift_on s (λ l : nodup_list A, list.foldl f b (elt_of l)) (λ l₁ l₂ p, foldl_eq_of_perm rcomm p b) definition bigsum (s : finset A) (f : A → nat) : nat := acc (compose_right nat.add f) (right_commutative_compose_right nat.add f nat.add.right_comm) 0 s definition bigprod (s : finset A) (f : A → nat) : nat := acc (compose_right nat.mul f) (right_commutative_compose_right nat.mul f nat.mul.right_comm) 1 s definition bigand (s : finset A) (p : A → Prop) : Prop := acc (compose_right and p) (right_commutative_compose_right and p (λ a b c, propext (and.right_comm a b c))) true s definition bigor (s : finset A) (p : A → Prop) : Prop := acc (compose_right or p) (right_commutative_compose_right or p (λ a b c, propext (or.right_comm a b c))) false s end acc end finset