/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn homotopy groups of a pointed space -/ import .trunc_group types.trunc .group_theory types.nat.hott open nat eq pointed trunc is_trunc algebra group function equiv unit is_equiv nat namespace eq definition inf_pgroup_loop [constructor] [instance] (A : Type*) : inf_pgroup (Ω A) := inf_pgroup.mk concat con.assoc inverse idp_con con_idp con.left_inv definition inf_group_loop [constructor] (A : Type*) : inf_group (Ω A) := _ definition ab_inf_group_loop [constructor] [instance] (A : Type*) : ab_inf_group (Ω (Ω A)) := ⦃ab_inf_group, inf_group_loop _, mul_comm := eckmann_hilton⦄ definition inf_group_loopn (n : ℕ) (A : Type*) [H : is_succ n] : inf_group (Ω[n] A) := by induction H; exact _ definition ab_inf_group_loopn (n : ℕ) (A : Type*) [H : is_at_least_two n] : ab_inf_group (Ω[n] A) := by induction H; exact _ definition gloop [constructor] (A : Type*) : InfGroup := InfGroup.mk (Ω A) (inf_group_loop A) definition homotopy_group [reducible] [constructor] (n : ℕ) (A : Type*) : Set* := ptrunc 0 (Ω[n] A) notation `π[`:95 n:0 `]`:0 := homotopy_group n section local attribute inf_group_loopn [instance] definition group_homotopy_group [instance] [constructor] [reducible] (n : ℕ) [is_succ n] (A : Type*) : group (π[n] A) := trunc_group (Ω[n] A) end definition group_homotopy_group2 [instance] (k : ℕ) (A : Type*) : group (carrier (ptrunctype.to_pType (π[k + 1] A))) := group_homotopy_group (k+1) A section local attribute ab_inf_group_loopn [instance] definition ab_group_homotopy_group [constructor] [reducible] (n : ℕ) [is_at_least_two n] (A : Type*) : ab_group (π[n] A) := trunc_ab_group (Ω[n] A) end local attribute ab_group_homotopy_group [instance] definition ghomotopy_group [constructor] (n : ℕ) [is_succ n] (A : Type*) : Group := Group.mk (π[n] A) _ definition aghomotopy_group [constructor] (n : ℕ) [is_at_least_two n] (A : Type*) : AbGroup := AbGroup.mk (π[n] A) _ definition fundamental_group [constructor] (A : Type*) : Group := ghomotopy_group 1 A notation `πg[`:95 n:0 `]`:0 := ghomotopy_group n notation `πag[`:95 n:0 `]`:0 := aghomotopy_group n notation `π₁` := fundamental_group -- should this be notation for the group or pointed type? definition tr_mul_tr {n : ℕ} {A : Type*} (p q : Ω[n + 1] A) : tr p *[πg[n+1] A] tr q = tr (p ⬝ q) := by reflexivity definition tr_mul_tr' {n : ℕ} {A : Type*} (p q : Ω[succ n] A) : tr p *[π[succ n] A] tr q = tr (p ⬝ q) := idp definition homotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B) : π[n] A ≃* π[n] B := ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H) definition homotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) : π[k] A ≃* Ω[k] (ptrunc k A) := begin refine !loopn_ptrunc_pequiv⁻¹ᵉ* ⬝e* _, exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end) end open trunc_index definition homotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) (A : Type*) : π[k] (ptrunc n A) ≃* π[k] A := calc π[k] (ptrunc n A) ≃* Ω[k] (ptrunc k (ptrunc n A)) : homotopy_group_pequiv_loop_ptrunc k (ptrunc n A) ... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (ptrunc_ptrunc_pequiv_left A (of_nat_le_of_nat H)) ... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ* definition homotopy_group_ptrunc [constructor] (k : ℕ) (A : Type*) : π[k] (ptrunc k A) ≃* π[k] A := homotopy_group_ptrunc_of_le (le.refl k) A theorem trivial_homotopy_of_is_set (n : ℕ) (A : Type*) [H : is_set A] : πg[n+1] A ≃g G0 := begin apply trivial_group_of_is_contr, apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply is_trunc_succ_succ_of_is_set end definition homotopy_group_succ_out (n : ℕ) (A : Type*) : π[n + 1] A = π₁ (Ω[n] A) := idp definition homotopy_group_succ_in (n : ℕ) (A : Type*) : π[n + 1] A ≃* π[n] (Ω A) := ptrunc_pequiv_ptrunc 0 (loopn_succ_in n A) definition ghomotopy_group_succ_out (n : ℕ) (A : Type*) : πg[n + 1] A = π₁ (Ω[n] A) := idp definition homotopy_group_succ_in_con {n : ℕ} {A : Type*} (g h : πg[n + 2] A) : homotopy_group_succ_in (succ n) A (g * h) = homotopy_group_succ_in (succ n) A g * homotopy_group_succ_in (succ n) A h := begin induction g with p, induction h with q, esimp, apply ap tr, apply loopn_succ_in_con end definition ghomotopy_group_succ_in [constructor] (n : ℕ) (A : Type*) : πg[n + 2] A ≃g πg[n + 1] (Ω A) := begin fapply isomorphism_of_equiv, { exact homotopy_group_succ_in (succ n) A }, { exact homotopy_group_succ_in_con }, end definition is_contr_homotopy_group_of_is_contr (n : ℕ) (A : Type*) [is_contr A] : is_contr (π[n] A) := begin apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply is_trunc_of_is_contr end definition homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B) : π[n] A →* π[n] B := ptrunc_functor 0 (apn n f) notation `π→[`:95 n:0 `]`:0 := homotopy_group_functor n definition homotopy_group_functor_phomotopy [constructor] (n : ℕ) {A B : Type*} {f g : A →* B} (p : f ~* g) : π→[n] f ~* π→[n] g := ptrunc_functor_phomotopy 0 (apn_phomotopy n p) definition homotopy_group_functor_pid (n : ℕ) (A : Type*) : π→[n] (pid A) ~* pid (π[n] A) := ptrunc_functor_phomotopy 0 !apn_pid ⬝* !ptrunc_functor_pid definition homotopy_group_functor_pcompose [constructor] (n : ℕ) {A B C : Type*} (g : B →* C) (f : A →* B) : π→[n] (g ∘* f) ~* π→[n] g ∘* π→[n] f := ptrunc_functor_phomotopy 0 !apn_pcompose ⬝* !ptrunc_functor_pcompose definition is_equiv_homotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B) (H : is_equiv f) : is_equiv (π→[n] f) := @(is_equiv_trunc_functor 0 _) (is_equiv_apn n f H) definition homotopy_group_succ_in_natural (n : ℕ) {A B : Type*} (f : A →* B) : psquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B) (π→[n + 1] f) (π→[n] (Ω→ f)) := begin exact ptrunc_functor_psquare 0 (loopn_succ_in_natural n f), end definition homotopy_group_succ_in_natural_unpointed (n : ℕ) {A B : Type*} (f : A →* B) : hsquare (homotopy_group_succ_in n A) (homotopy_group_succ_in n B) (π→[n+1] f) (π→[n] (Ω→ f)) := homotopy_group_succ_in_natural n f definition is_equiv_homotopy_group_functor_ap1 (n : ℕ) {A B : Type*} (f : A →* B) [is_equiv (π→[n + 1] f)] : is_equiv (π→[n] (Ω→ f)) := have is_equiv (π→[n] (Ω→ f) ∘ homotopy_group_succ_in n A), from is_equiv_of_equiv_of_homotopy (equiv.mk (π→[n+1] f) _ ⬝e homotopy_group_succ_in n B) (homotopy_group_succ_in_natural n f)⁻¹*, is_equiv.cancel_right (homotopy_group_succ_in n A) _ definition tinverse [constructor] {X : Type*} : π[1] X →* π[1] X := ptrunc_functor 0 (pinverse X) definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) := by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse definition ptrunc_functor_pinverse [constructor] {X : Type*} : ptrunc_functor 0 (@pinverse X) ~* @tinverse X := begin fapply phomotopy.mk, { reflexivity}, { reflexivity} end definition homotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B) (p q : πg[n+1] A) : (π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n+1] g) p *[πg[n+1] B] (π→[n + 1] g) q := begin unfold [ghomotopy_group, homotopy_group] at *, refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p, refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q, apply ap tr, apply apn_con end definition homotopy_group_homomorphism [constructor] (n : ℕ) [H : is_succ n] {A B : Type*} (f : A →* B) : πg[n] A →g πg[n] B := begin induction H with n, fconstructor, { exact homotopy_group_functor (n+1) f}, { apply homotopy_group_functor_mul} end notation `π→g[`:95 n:0 `]`:0 := homotopy_group_homomorphism n definition homotopy_group_homomorphism_pcompose (n : ℕ) [H : is_succ n] {A B C : Type*} (g : B →* C) (f : A →* B) : π→g[n] (g ∘* f) ~ π→g[n] g ∘ π→g[n] f := begin induction H with n, exact to_homotopy (homotopy_group_functor_pcompose (succ n) g f) end definition homotopy_group_isomorphism_of_pequiv [constructor] (n : ℕ) {A B : Type*} (f : A ≃* B) : πg[n+1] A ≃g πg[n+1] B := begin apply isomorphism.mk (homotopy_group_homomorphism (succ n) f), exact is_equiv_homotopy_group_functor _ _ _, end definition homotopy_group_add (A : Type*) (n m : ℕ) : πg[n+m+1] A ≃g πg[n+1] (Ω[m] A) := begin revert A, induction m with m IH: intro A, { reflexivity}, { esimp [loopn, nat.add], refine !ghomotopy_group_succ_in ⬝g _, refine !IH ⬝g _, apply homotopy_group_isomorphism_of_pequiv, exact !loopn_succ_in⁻¹ᵉ*} end theorem trivial_homotopy_add_of_is_set_loopn {n : ℕ} (m : ℕ) {A : Type*} (H : is_set (Ω[n] A)) : πg[m+n+1] A ≃g G0 := !homotopy_group_add ⬝g !trivial_homotopy_of_is_set theorem trivial_homotopy_le_of_is_set_loopn {n : ℕ} (m : ℕ) (H1 : n ≤ m) {A : Type*} (H2 : is_set (Ω[n] A)) : πg[m+1] A ≃g G0 := obtain (k : ℕ) (p : n + k = m), from le.elim H1, isomorphism_of_eq (ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k)) ⬝g trivial_homotopy_add_of_is_set_loopn k H2 definition homotopy_group_pequiv_loop_ptrunc_con {k : ℕ} {A : Type*} (p q : πg[k +1] A) : homotopy_group_pequiv_loop_ptrunc (succ k) A (p * q) = homotopy_group_pequiv_loop_ptrunc (succ k) A p ⬝ homotopy_group_pequiv_loop_ptrunc (succ k) A q := begin refine _ ⬝ !loopn_pequiv_loopn_con, exact ap (loopn_pequiv_loopn _ _) !loopn_ptrunc_pequiv_inv_con end definition homotopy_group_pequiv_loop_ptrunc_inv_con {k : ℕ} {A : Type*} (p q : Ω[succ k] (ptrunc (succ k) A)) : (homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* (p ⬝ q) = (homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* p * (homotopy_group_pequiv_loop_ptrunc (succ k) A)⁻¹ᵉ* q := inv_preserve_binary (homotopy_group_pequiv_loop_ptrunc (succ k) A) mul concat (@homotopy_group_pequiv_loop_ptrunc_con k A) p q definition ghomotopy_group_ptrunc_of_le [constructor] {k n : ℕ} (H : k ≤ n) [Hk : is_succ k] (A : Type*) : πg[k] (ptrunc n A) ≃g πg[k] A := begin fapply isomorphism_of_equiv, { exact homotopy_group_ptrunc_of_le H A}, { intro g₁ g₂, induction Hk with k, refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con, apply ap ((homotopy_group_pequiv_loop_ptrunc (k+1) A)⁻¹ᵉ*), refine _ ⬝ !loopn_pequiv_loopn_con , apply ap (loopn_pequiv_loopn (k+1) _), apply homotopy_group_pequiv_loop_ptrunc_con} end lemma ghomotopy_group_isomorphism_of_ptrunc_pequiv {A B : Type*} (n k : ℕ) (H : n+1 ≤[ℕ] k) (f : ptrunc k A ≃* ptrunc k B) : πg[n+1] A ≃g πg[n+1] B := (ghomotopy_group_ptrunc_of_le H A)⁻¹ᵍ ⬝g homotopy_group_isomorphism_of_pequiv n f ⬝g ghomotopy_group_ptrunc_of_le H B definition fundamental_group_isomorphism {X : Type*} {G : Group} (e : Ω X ≃ G) (hom_e : Πp q, e (p ⬝ q) = e p * e q) : π₁ X ≃g G := isomorphism_of_equiv (trunc_equiv_trunc 0 e ⬝e (trunc_equiv 0 G)) begin intro p q, induction p with p, induction q with q, exact hom_e p q end definition ghomotopy_group_ptrunc [constructor] (k : ℕ) [is_succ k] (A : Type*) : πg[k] (ptrunc k A) ≃g πg[k] A := ghomotopy_group_ptrunc_of_le (le.refl k) A section psquare variables {A₀₀ A₂₀ A₀₂ A₂₂ : Type*} {f₁₀ : A₀₀ →* A₂₀} {f₁₂ : A₀₂ →* A₂₂} {f₀₁ : A₀₀ →* A₀₂} {f₂₁ : A₂₀ →* A₂₂} definition homotopy_group_functor_psquare (n : ℕ) (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : psquare (π→[n] f₁₀) (π→[n] f₁₂) (π→[n] f₀₁) (π→[n] f₂₁) := !homotopy_group_functor_pcompose⁻¹* ⬝* homotopy_group_functor_phomotopy n p ⬝* !homotopy_group_functor_pcompose definition homotopy_group_homomorphism_psquare (n : ℕ) [H : is_succ n] (p : psquare f₁₀ f₁₂ f₀₁ f₂₁) : hsquare (π→g[n] f₁₀) (π→g[n] f₁₂) (π→g[n] f₀₁) (π→g[n] f₂₁) := begin induction H with n, exact to_homotopy (ptrunc_functor_psquare 0 (apn_psquare (succ n) p)) end end psquare /- some homomorphisms -/ -- definition is_homomorphism_cast_loopn_succ_eq_in (n : ℕ) {A : Type*} : -- is_homomorphism (loopn_succ_in A (succ n) : πg[n+1+1] A → πg[n+1] (Ω A)) := -- begin -- intro g h, induction g with g, induction h with h, -- xrewrite [tr_mul_tr, - + fn_cast_eq_cast_fn _ (λn, tr), tr_mul_tr, ↑cast, -tr_compose, -- loopn_succ_eq_in_concat, - + tr_compose], -- end definition is_mul_hom_inverse (n : ℕ) (A : Type*) : is_mul_hom (λp, p⁻¹ : (πag[n+2] A) → (πag[n+2] A)) := begin intro g h, exact ap inv (mul.comm g h) ⬝ mul_inv h g, end end eq