-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.eq open inhabited decidable eq.ops namespace prod variables {A B : Type} {a₁ a₂ : A} {b₁ b₂ : B} {u : A × B} theorem pair_eq : a₁ = a₂ → b₁ = b₂ → (a₁, b₁) = (a₂, b₂) := assume H1 H2, H1 ▸ H2 ▸ rfl protected theorem equal {p₁ p₂ : prod A B} : pr₁ p₁ = pr₁ p₂ → pr₂ p₁ = pr₂ p₂ → p₁ = p₂ := destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, pair_eq H₁ H₂)) protected definition is_inhabited [instance] : inhabited A → inhabited B → inhabited (prod A B) := take (H₁ : inhabited A) (H₂ : inhabited B), inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (pair a b))) protected definition has_decidable_eq [instance] : decidable_eq A → decidable_eq B → decidable_eq (A × B) := take (H₁ : decidable_eq A) (H₂ : decidable_eq B) (u v : A × B), have H₃ : u = v ↔ (pr₁ u = pr₁ v) ∧ (pr₂ u = pr₂ v), from iff.intro (assume H, H ▸ and.intro rfl rfl) (assume H, and.elim H (assume H₄ H₅, equal H₄ H₅)), decidable_of_decidable_of_iff _ (iff.symm H₃) -- ### flip operation definition flip (a : A × B) : B × A := pair (pr2 a) (pr1 a) theorem flip_def (a : A × B) : flip a = pair (pr2 a) (pr1 a) := rfl theorem flip_pair (a : A) (b : B) : flip (pair a b) = pair b a := rfl theorem flip_pr1 (a : A × B) : pr1 (flip a) = pr2 a := rfl theorem flip_pr2 (a : A × B) : pr2 (flip a) = pr1 a := rfl theorem flip_flip (a : A × B) : flip (flip a) = a := destruct a (take x y, rfl) theorem P_flip {P : A → B → Prop} (a : A × B) (H : P (pr1 a) (pr2 a)) : P (pr2 (flip a)) (pr1 (flip a)) := (flip_pr1 a)⁻¹ ▸ (flip_pr2 a)⁻¹ ▸ H theorem flip_inj {a b : A × B} (H : flip a = flip b) : a = b := have H2 : flip (flip a) = flip (flip b), from congr_arg flip H, show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2 -- ### coordinatewise unary maps definition map_pair (f : A → B) (a : A × A) : B × B := pair (f (pr1 a)) (f (pr2 a)) theorem map_pair_def (f : A → B) (a : A × A) : map_pair f a = pair (f (pr1 a)) (f (pr2 a)) := rfl theorem map_pair_pair (f : A → B) (a a' : A) : map_pair f (pair a a') = pair (f a) (f a') := (pr1.mk a a') ▸ (pr2.mk a a') ▸ rfl theorem map_pair_pr1 (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) := !pr1.mk theorem map_pair_pr2 (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) := !pr2.mk -- ### coordinatewise binary maps definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C := pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) : map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := calc map_pair2 f (pair a a') (pair b b') = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b'))) : {pr1.mk b b'} ... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2.mk b b'} ... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2.mk a a'} ... = pair (f a b) (f a' b') : {pr1.mk a a'} theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := !pr1.mk theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := !pr2.mk theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) := have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from calc pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _ ... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b ... = f (pr1 (flip a)) (pr2 b) : {(flip_pr1 a)⁻¹} ... = f (pr1 (flip a)) (pr1 (flip b)) : {(flip_pr1 b)⁻¹} ... = pr1 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr1 f _ _)⁻¹, have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from calc pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _ ... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b ... = f (pr2 (flip a)) (pr1 b) : {flip_pr2 a} ... = f (pr2 (flip a)) (pr2 (flip b)) : {flip_pr2 b} ... = pr2 (map_pair2 f (flip a) (flip b)) : (map_pair2_pr2 f _ _)⁻¹, pair_eq Hx Hy end prod