/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Adds the ordering, and instantiates the rationals as an ordered field. -/ import data.int algebra.ordered_field algebra.group_power data.rat.basic open quot eq.ops open algebra /- the ordering on representations -/ namespace prerat section int_notation open int variables {a b : prerat} definition pos (a : prerat) : Prop := num a > 0 definition nonneg (a : prerat) : Prop := num a ≥ 0 theorem pos_of_int (a : ℤ) : pos (of_int a) ↔ (a > 0) := !iff.rfl theorem nonneg_of_int (a : ℤ) : nonneg (of_int a) ↔ (a ≥ 0) := !iff.rfl theorem pos_eq_pos_of_equiv {a b : prerat} (H1 : a ≡ b) : pos a = pos b := propext (iff.intro (num_pos_of_equiv H1) (num_pos_of_equiv H1⁻¹)) theorem nonneg_eq_nonneg_of_equiv (H : a ≡ b) : nonneg a = nonneg b := have H1 : (0 = num a) = (0 = num b), from propext (iff.intro (assume H2, eq.symm (num_eq_zero_of_equiv H H2⁻¹)) (assume H2, eq.symm (num_eq_zero_of_equiv H⁻¹ H2⁻¹))), calc nonneg a = (pos a ∨ 0 = num a) : propext !le_iff_lt_or_eq ... = (pos b ∨ 0 = num a) : pos_eq_pos_of_equiv H ... = (pos b ∨ 0 = num b) : H1 ... = nonneg b : propext !le_iff_lt_or_eq theorem nonneg_zero : nonneg zero := le.refl 0 theorem nonneg_add (H1 : nonneg a) (H2 : nonneg b) : nonneg (add a b) := show num a * denom b + num b * denom a ≥ 0, from add_nonneg (mul_nonneg H1 (le_of_lt (denom_pos b))) (mul_nonneg H2 (le_of_lt (denom_pos a))) theorem nonneg_antisymm (H1 : nonneg a) (H2 : nonneg (neg a)) : a ≡ zero := have H3 : num a = 0, from le.antisymm (nonpos_of_neg_nonneg H2) H1, equiv_zero_of_num_eq_zero H3 theorem nonneg_total (a : prerat) : nonneg a ∨ nonneg (neg a) := or.elim (le.total 0 (num a)) (suppose 0 ≤ num a, or.inl this) (suppose 0 ≥ num a, or.inr (neg_nonneg_of_nonpos this)) theorem nonneg_of_pos (H : pos a) : nonneg a := le_of_lt H theorem ne_zero_of_pos (H : pos a) : ¬ a ≡ zero := assume H', ne_of_gt H (num_eq_zero_of_equiv_zero H') theorem pos_of_nonneg_of_ne_zero (H1 : nonneg a) (H2 : ¬ a ≡ zero) : pos a := have num a ≠ 0, from suppose num a = 0, H2 (equiv_zero_of_num_eq_zero this), lt_of_le_of_ne H1 (ne.symm this) theorem nonneg_mul (H1 : nonneg a) (H2 : nonneg b) : nonneg (mul a b) := mul_nonneg H1 H2 theorem pos_mul (H1 : pos a) (H2 : pos b) : pos (mul a b) := mul_pos H1 H2 end int_notation end prerat local attribute prerat.setoid [instance] /- The ordering on the rationals. The definitions of pos and nonneg are kept private, because they are only meant for internal use. Users should use a > 0 and a ≥ 0 instead of pos and nonneg. -/ namespace rat open nat int variables {a b c : ℚ} /- transfer properties of pos and nonneg -/ private definition pos (a : ℚ) : Prop := quot.lift prerat.pos @prerat.pos_eq_pos_of_equiv a private definition nonneg (a : ℚ) : Prop := quot.lift prerat.nonneg @prerat.nonneg_eq_nonneg_of_equiv a private theorem pos_of_int (a : ℤ) : (a > 0) ↔ pos (of_int a) := prerat.pos_of_int a private theorem nonneg_of_int (a : ℤ) : (a ≥ 0) ↔ nonneg (of_int a) := prerat.nonneg_of_int a private theorem nonneg_zero : nonneg 0 := prerat.nonneg_zero private theorem nonneg_add : nonneg a → nonneg b → nonneg (a + b) := quot.induction_on₂ a b @prerat.nonneg_add private theorem nonneg_antisymm : nonneg a → nonneg (-a) → a = 0 := quot.induction_on a (take u, assume H1 H2, quot.sound (prerat.nonneg_antisymm H1 H2)) private theorem nonneg_total (a : ℚ) : nonneg a ∨ nonneg (-a) := quot.induction_on a @prerat.nonneg_total private theorem nonneg_of_pos : pos a → nonneg a := quot.induction_on a @prerat.nonneg_of_pos private theorem ne_zero_of_pos : pos a → a ≠ 0 := quot.induction_on a (take u, assume H1 H2, prerat.ne_zero_of_pos H1 (quot.exact H2)) private theorem pos_of_nonneg_of_ne_zero : nonneg a → ¬ a = 0 → pos a := quot.induction_on a (take u, assume h : nonneg ⟦u⟧, suppose ⟦u⟧ ≠ (rat.of_num 0), have ¬ (prerat.equiv u prerat.zero), from assume H, this (quot.sound H), prerat.pos_of_nonneg_of_ne_zero h this) private theorem nonneg_mul : nonneg a → nonneg b → nonneg (a * b) := quot.induction_on₂ a b @prerat.nonneg_mul private theorem pos_mul : pos a → pos b → pos (a * b) := quot.induction_on₂ a b @prerat.pos_mul private definition decidable_pos (a : ℚ) : decidable (pos a) := quot.rec_on_subsingleton a (take u, int.decidable_lt 0 (prerat.num u)) /- define order in terms of pos and nonneg -/ protected definition lt (a b : ℚ) : Prop := pos (b - a) protected definition le (a b : ℚ) : Prop := nonneg (b - a) definition rat_has_lt [reducible] [instance] [priority rat.prio] : has_lt rat := has_lt.mk rat.lt definition rat_has_le [reducible] [instance] [priority rat.prio] : has_le rat := has_le.mk rat.le protected lemma lt_def (a b : ℚ) : (a < b) = pos (b - a) := rfl protected lemma le_def (a b : ℚ) : (a ≤ b) = nonneg (b - a) := rfl theorem of_int_lt_of_int_iff (a b : ℤ) : of_int a < of_int b ↔ a < b := iff.symm (calc a < b ↔ b - a > 0 : iff.symm !sub_pos_iff_lt ... ↔ pos (of_int (b - a)) : iff.symm !pos_of_int ... ↔ pos (of_int b - of_int a) : !of_int_sub ▸ iff.rfl ... ↔ of_int a < of_int b : iff.rfl) theorem of_int_lt_of_int_of_lt {a b : ℤ} (H : a < b) : of_int a < of_int b := iff.mpr !of_int_lt_of_int_iff H theorem lt_of_of_int_lt_of_int {a b : ℤ} (H : of_int a < of_int b) : a < b := iff.mp !of_int_lt_of_int_iff H theorem of_int_le_of_int_iff (a b : ℤ) : of_int a ≤ of_int b ↔ (a ≤ b) := iff.symm (calc a ≤ b ↔ b - a ≥ 0 : iff.symm !sub_nonneg_iff_le ... ↔ nonneg (of_int (b - a)) : iff.symm !nonneg_of_int ... ↔ nonneg (of_int b - of_int a) : !of_int_sub ▸ iff.rfl ... ↔ of_int a ≤ of_int b : iff.rfl) theorem of_int_le_of_int_of_le {a b : ℤ} (H : a ≤ b) : of_int a ≤ of_int b := iff.mpr !of_int_le_of_int_iff H theorem le_of_of_int_le_of_int {a b : ℤ} (H : of_int a ≤ of_int b) : a ≤ b := iff.mp !of_int_le_of_int_iff H theorem of_nat_lt_of_nat_iff (a b : ℕ) : of_nat a < of_nat b ↔ a < b := by rewrite [*of_nat_eq, of_int_lt_of_int_iff, int.of_nat_lt_of_nat_iff] theorem of_nat_lt_of_nat_of_lt {a b : ℕ} (H : a < b) : of_nat a < of_nat b := iff.mpr !of_nat_lt_of_nat_iff H theorem lt_of_of_nat_lt_of_nat {a b : ℕ} (H : of_nat a < of_nat b) : a < b := iff.mp !of_nat_lt_of_nat_iff H theorem of_nat_le_of_nat_iff (a b : ℕ) : of_nat a ≤ of_nat b ↔ a ≤ b := by rewrite [*of_nat_eq, of_int_le_of_int_iff, int.of_nat_le_of_nat_iff] theorem of_nat_le_of_nat_of_le {a b : ℕ} (H : a ≤ b) : of_nat a ≤ of_nat b := iff.mpr !of_nat_le_of_nat_iff H theorem le_of_of_nat_le_of_nat {a b : ℕ} (H : of_nat a ≤ of_nat b) : a ≤ b := iff.mp !of_nat_le_of_nat_iff H theorem of_nat_nonneg (a : ℕ) : (of_nat a ≥ 0) := of_nat_le_of_nat_of_le !nat.zero_le protected theorem le_refl (a : ℚ) : a ≤ a := by rewrite [rat.le_def, sub_self]; apply nonneg_zero protected theorem le_trans (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := assert H3 : nonneg (c - b + (b - a)), from nonneg_add H2 H1, begin revert H3, rewrite [rat.sub.def, add.assoc, sub_eq_add_neg, neg_add_cancel_left], intro H3, apply H3 end protected theorem le_antisymm (H1 : a ≤ b) (H2 : b ≤ a) : a = b := have H3 : nonneg (-(a - b)), from !neg_sub⁻¹ ▸ H1, have H4 : a - b = 0, from nonneg_antisymm H2 H3, eq_of_sub_eq_zero H4 protected theorem le_total (a b : ℚ) : a ≤ b ∨ b ≤ a := or.elim (nonneg_total (b - a)) (assume H, or.inl H) (assume H, or.inr begin rewrite neg_sub at H, exact H end) protected theorem le_by_cases {P : Prop} (a b : ℚ) (H : a ≤ b → P) (H2 : b ≤ a → P) : P := or.elim (!rat.le_total) H H2 protected theorem lt_iff_le_and_ne (a b : ℚ) : a < b ↔ a ≤ b ∧ a ≠ b := iff.intro (assume H : a < b, have b - a ≠ 0, from ne_zero_of_pos H, have a ≠ b, from ne.symm (assume H', this (H' ▸ !sub_self)), and.intro (nonneg_of_pos H) this) (assume H : a ≤ b ∧ a ≠ b, obtain aleb aneb, from H, have b - a ≠ 0, from (assume H', aneb (eq_of_sub_eq_zero H')⁻¹), pos_of_nonneg_of_ne_zero aleb this) protected theorem le_iff_lt_or_eq (a b : ℚ) : a ≤ b ↔ a < b ∨ a = b := iff.intro (assume h : a ≤ b, decidable.by_cases (suppose a = b, or.inr this) (suppose a ≠ b, or.inl (iff.mpr !rat.lt_iff_le_and_ne (and.intro h this)))) (suppose a < b ∨ a = b, or.elim this (suppose a < b, and.left (iff.mp !rat.lt_iff_le_and_ne this)) (suppose a = b, this ▸ !rat.le_refl)) private theorem to_nonneg : a ≥ 0 → nonneg a := by intros; rewrite -sub_zero; eassumption protected theorem add_le_add_left (H : a ≤ b) (c : ℚ) : c + a ≤ c + b := have c + b - (c + a) = b - a, by rewrite [sub.def, neg_add, -add.assoc, add.comm c, add_neg_cancel_right], show nonneg (c + b - (c + a)), from this⁻¹ ▸ H protected theorem mul_nonneg (H1 : a ≥ (0 : ℚ)) (H2 : b ≥ (0 : ℚ)) : a * b ≥ (0 : ℚ) := assert nonneg (a * b), from nonneg_mul (to_nonneg H1) (to_nonneg H2), begin rewrite -sub_zero at this, exact this end private theorem to_pos : a > 0 → pos a := by intros; rewrite -sub_zero; eassumption protected theorem mul_pos (H1 : a > (0 : ℚ)) (H2 : b > (0 : ℚ)) : a * b > (0 : ℚ) := assert pos (a * b), from pos_mul (to_pos H1) (to_pos H2), begin rewrite -sub_zero at this, exact this end definition decidable_lt [instance] : decidable_rel rat.lt := take a b, decidable_pos (b - a) protected theorem le_of_lt (H : a < b) : a ≤ b := iff.mpr !rat.le_iff_lt_or_eq (or.inl H) protected theorem lt_irrefl (a : ℚ) : ¬ a < a := take Ha, let Hand := (iff.mp !rat.lt_iff_le_and_ne) Ha in (and.right Hand) rfl protected theorem not_le_of_gt (H : a < b) : ¬ b ≤ a := assume Hba, let Heq := rat.le_antisymm (rat.le_of_lt H) Hba in !rat.lt_irrefl (Heq ▸ H) protected theorem lt_of_lt_of_le (Hab : a < b) (Hbc : b ≤ c) : a < c := let Hab' := rat.le_of_lt Hab in let Hac := rat.le_trans Hab' Hbc in (iff.mpr !rat.lt_iff_le_and_ne) (and.intro Hac (assume Heq, rat.not_le_of_gt (Heq ▸ Hab) Hbc)) protected theorem lt_of_le_of_lt (Hab : a ≤ b) (Hbc : b < c) : a < c := let Hbc' := rat.le_of_lt Hbc in let Hac := rat.le_trans Hab Hbc' in (iff.mpr !rat.lt_iff_le_and_ne) (and.intro Hac (assume Heq, rat.not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab)) protected theorem zero_lt_one : (0 : ℚ) < 1 := trivial protected theorem add_lt_add_left (H : a < b) (c : ℚ) : c + a < c + b := let H' := rat.le_of_lt H in (iff.mpr (rat.lt_iff_le_and_ne _ _)) (and.intro (rat.add_le_add_left H' _) (take Heq, let Heq' := add_left_cancel Heq in !rat.lt_irrefl (Heq' ▸ H))) protected definition discrete_linear_ordered_field [reducible] [trans_instance] : algebra.discrete_linear_ordered_field rat := ⦃algebra.discrete_linear_ordered_field, rat.discrete_field, le_refl := rat.le_refl, le_trans := @rat.le_trans, le_antisymm := @rat.le_antisymm, le_total := @rat.le_total, le_of_lt := @rat.le_of_lt, lt_irrefl := rat.lt_irrefl, lt_of_lt_of_le := @rat.lt_of_lt_of_le, lt_of_le_of_lt := @rat.lt_of_le_of_lt, le_iff_lt_or_eq := @rat.le_iff_lt_or_eq, add_le_add_left := @rat.add_le_add_left, mul_nonneg := @rat.mul_nonneg, mul_pos := @rat.mul_pos, decidable_lt := @decidable_lt, zero_lt_one := rat.zero_lt_one, add_lt_add_left := @rat.add_lt_add_left⦄ theorem of_nat_abs (a : ℤ) : abs (of_int a) = of_nat (int.nat_abs a) := assert ∀ n : ℕ, of_int (int.neg_succ_of_nat n) = - of_nat (nat.succ n), from λ n, rfl, int.induction_on a (take b, abs_of_nonneg !of_nat_nonneg) (take b, by rewrite [this, abs_neg, abs_of_nonneg !of_nat_nonneg]) theorem eq_zero_of_nonneg_of_forall_lt {x : ℚ} (xnonneg : x ≥ 0) (H : ∀ ε, ε > 0 → x < ε) : x = 0 := decidable.by_contradiction (suppose x ≠ 0, have x > 0, from lt_of_le_of_ne xnonneg (ne.symm this), have x < x, from H x this, show false, from !lt.irrefl this) theorem eq_zero_of_nonneg_of_forall_le {x : ℚ} (xnonneg : x ≥ 0) (H : ∀ ε, ε > 0 → x ≤ ε) : x = 0 := have H' : ∀ ε, ε > 0 → x < ε, from take ε, suppose h₁ : ε > 0, have ε / 2 > 0, from div_pos_of_pos_of_pos h₁ two_pos, have x ≤ ε / 2, from H _ this, show x < ε, from lt_of_le_of_lt this (div_two_lt_of_pos h₁), eq_zero_of_nonneg_of_forall_lt xnonneg H' theorem eq_zero_of_forall_abs_le {x : ℚ} (H : ∀ ε, ε > 0 → abs x ≤ ε) : x = 0 := decidable.by_contradiction (suppose x ≠ 0, have abs x = 0, from eq_zero_of_nonneg_of_forall_le !abs_nonneg H, show false, from `x ≠ 0` (eq_zero_of_abs_eq_zero this)) theorem eq_of_forall_abs_sub_le {x y : ℚ} (H : ∀ ε, ε > 0 → abs (x - y) ≤ ε) : x = y := have x - y = 0, from eq_zero_of_forall_abs_le H, eq_of_sub_eq_zero this section open int theorem num_nonneg_of_nonneg {q : ℚ} (H : q ≥ 0) : num q ≥ 0 := have of_int (num q) ≥ of_int 0, begin rewrite [-mul_denom], apply rat.mul_nonneg H, rewrite [-of_int_zero, of_int_le_of_int_iff], exact int.le_of_lt !denom_pos end, show num q ≥ 0, from le_of_of_int_le_of_int this theorem num_pos_of_pos {q : ℚ} (H : q > 0) : num q > 0 := have of_int (num q) > of_int 0, begin rewrite [-mul_denom], apply rat.mul_pos H, rewrite [-of_int_zero, of_int_lt_of_int_iff], exact !denom_pos end, show num q > 0, from lt_of_of_int_lt_of_int this theorem num_neg_of_neg {q : ℚ} (H : q < 0) : num q < 0 := have of_int (num q) < of_int 0, begin rewrite [-mul_denom], apply mul_neg_of_neg_of_pos H, change of_int (denom q) > of_int 0, xrewrite [of_int_lt_of_int_iff], exact !denom_pos end, show num q < 0, from lt_of_of_int_lt_of_int this theorem num_nonpos_of_nonpos {q : ℚ} (H : q ≤ 0) : num q ≤ 0 := have of_int (num q) ≤ of_int 0, begin rewrite [-mul_denom], apply mul_nonpos_of_nonpos_of_nonneg H, change of_int (denom q) ≥ of_int 0, xrewrite [of_int_le_of_int_iff], exact int.le_of_lt !denom_pos end, show num q ≤ 0, from le_of_of_int_le_of_int this end definition ubound : ℚ → ℕ := λ a : ℚ, nat.succ (int.nat_abs (num a)) theorem ubound_ge (a : ℚ) : of_nat (ubound a) ≥ a := have h : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from !abs_mul ▸ !mul_denom ▸ rfl, assert of_int (denom a) > 0, from of_int_lt_of_int_of_lt !denom_pos, have 1 ≤ abs (of_int (denom a)), begin rewrite (abs_of_pos this), apply of_int_le_of_int_of_le, apply denom_pos end, have abs a ≤ abs (of_int (num a)), from le_of_mul_le_of_ge_one (h ▸ !le.refl) !abs_nonneg this, calc a ≤ abs a : le_abs_self ... ≤ abs (of_int (num a)) : this ... ≤ abs (of_int (num a)) + 1 : le_add_of_nonneg_right trivial ... = of_nat (int.nat_abs (num a)) + 1 : of_nat_abs ... = of_nat (nat.succ (int.nat_abs (num a))) : of_nat_add theorem ubound_pos (a : ℚ) : ubound a > 0 := !nat.succ_pos open nat theorem binary_nat_bound (a : ℕ) : of_nat a ≤ 2^a := nat.induction_on a (zero_le_one) (take n : nat, assume Hn, calc of_nat (nat.succ n) = (of_nat n) + 1 : of_nat_add ... ≤ 2^n + 1 : algebra.add_le_add_right Hn ... ≤ 2^n + (2:rat)^n : add_le_add_left (pow_ge_one_of_ge_one two_ge_one _) ... = 2^(succ n) : pow_two_add) theorem binary_bound (a : ℚ) : ∃ n : ℕ, a ≤ 2^n := exists.intro (ubound a) (calc a ≤ of_nat (ubound a) : ubound_ge ... ≤ 2^(ubound a) : binary_nat_bound) end rat