/* Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include "kernel/environment.h" #include "library/io_state.h" #include "library/reducible.h" #include "library/tmp_type_context.h" namespace lean { class app_builder_exception : public exception { public: // We may provide more information in the future. app_builder_exception():exception("app_builder_exception") {} }; /** \brief Helper for creating simple applications where some arguments are inferred using type inference. Example, given rel.{l_1 l_2} : Pi (A : Type.{l_1}) (B : A -> Type.{l_2}), (Pi x : A, B x) -> (Pi x : A, B x) -> , Prop nat : Type.{1} real : Type.{1} vec.{l} : Pi (A : Type.{l}) (n : nat), Type.{l1} f g : Pi (n : nat), vec real n then builder.mk_app(rel, f, g) returns the application rel.{1 2} nat (fun n : nat, vec real n) f g */ class app_builder { struct imp; std::unique_ptr m_ptr; public: app_builder(environment const & env, io_state const & ios, reducible_behavior b = UnfoldReducible); app_builder(environment const & env, reducible_behavior b = UnfoldReducible); app_builder(tmp_type_context & ctx); ~app_builder(); /** \brief Create an application (d.{_ ... _} _ ... _ args[0] ... args[nargs-1]). The missing arguments and universes levels are inferred using type inference. \remark The method throwns an app_builder_exception if: not all arguments can be inferred; or constraints are created during type inference; or an exception is thrown during type inference. \remark This methods uses just higher-order pattern matching. */ expr mk_app(name const & c, unsigned nargs, expr const * args); expr mk_app(name const & c, std::initializer_list const & args) { return mk_app(c, args.size(), args.begin()); } expr mk_app(name const & c, expr const & a1) { return mk_app(c, {a1}); } expr mk_app(name const & c, expr const & a1, expr const & a2) { return mk_app(c, {a1, a2}); } expr mk_app(name const & c, expr const & a1, expr const & a2, expr const & a3) { return mk_app(c, {a1, a2, a3}); } expr mk_app(name const & c, unsigned mask_sz, bool const * mask, expr const * args); /** \brief Shortcut for mk_app(c, total_nargs, mask, expl_nargs), where \c mask starts with total_nargs - expl_nargs false's followed by expl_nargs true's \pre total_nargs >= expl_nargs */ expr mk_app(name const & c, unsigned total_nargs, unsigned expl_nargs, expr const * expl_args); expr mk_app(name const & c, unsigned total_nargs, std::initializer_list const & args) { return mk_app(c, total_nargs, args.size(), args.begin()); } expr mk_app(name const & c, unsigned total_nargs, expr const & a1) { return mk_app(c, total_nargs, {a1}); } expr mk_app(name const & c, unsigned total_nargs, expr const & a1, expr const & a2) { return mk_app(c, total_nargs, {a1, a2}); } expr mk_app(name const & c, unsigned total_nargs, expr const & a1, expr const & a2, expr const & a3) { return mk_app(c, total_nargs, {a1, a2, a3}); } /** \brief Similar to mk_app(n, lhs, rhs), but handles eq and iff more efficiently. */ expr mk_rel(name const & n, expr const & lhs, expr const & rhs); expr mk_eq(expr const & lhs, expr const & rhs); expr mk_iff(expr const & lhs, expr const & rhs); /** \brief Similar a reflexivity proof for the given relation */ expr mk_refl(name const & relname, expr const & a); expr mk_eq_refl(expr const & a); expr mk_iff_refl(expr const & a); /** \brief Similar a symmetry proof for the given relation */ expr mk_symm(name const & relname, expr const & H); expr mk_eq_symm(expr const & H); expr mk_iff_symm(expr const & H); /** \brief Similar a transitivity proof for the given relation */ expr mk_trans(name const & relname, expr const & H1, expr const & H2); expr mk_eq_trans(expr const & H1, expr const & H2); expr mk_iff_trans(expr const & H1, expr const & H2); /** \brief Create a (non-dependent) eq.rec application. C is the motive. The expected types for C, H1 and H2 are C : A -> Type H1 : C a H2 : a = b The resultant application is @eq.rec A a C H1 b H2 In the HoTT library, we actually create an eq.nrec application since eq.rec is a dependent eliminator in HoTT. */ expr mk_eq_rec(expr const & C, expr const & H1, expr const & H2); /** \brief Create a (dependent) eq.drec application. C is the motive. The expected types for C, H1 and H2 are C : Pi (x : A), a = x -> Type H1 : C a (eq.refl a) H2 : a = b The resultant application is @eq.drec A a C H1 b H2 In the HoTT library, we actually create an eq.rec application because eq.rec is a dependent eliminator in HoTT. */ expr mk_eq_drec(expr const & C, expr const & H1, expr const & H2); expr mk_congr_arg(expr const & f, expr const & H); expr mk_congr_fun(expr const & H, expr const & a); expr mk_congr(expr const & H1, expr const & H2); /** \brief Given a reflexive relation R, and a proof H : a = b, build a proof for (R a b) */ expr lift_from_eq(name const & R, expr const & H); /** \brief not p -> (p <-> false) */ expr mk_iff_false_intro(expr const & H); /** \brief p -> (p <-> true) */ expr mk_iff_true_intro(expr const & H); /** \brief (p <-> false) -> not p */ expr mk_not_of_iff_false(expr const & H); /** \brief (p <-> true) -> p */ expr mk_of_iff_true(expr const & H); /** \brief (true <-> false) -> false */ expr mk_false_of_true_iff_false(expr const & H); expr mk_not(expr const & H); expr mk_partial_add(expr const & A); expr mk_partial_mul(expr const & A); expr mk_zero(expr const & A); expr mk_one(expr const & A); expr mk_partial_left_distrib(expr const & A); expr mk_partial_right_distrib(expr const & A); /** \brief Create (@sorry type) */ expr mk_sorry(expr const & type); /** \brief False elimination */ expr mk_false_rec(expr const & c, expr const & H); /** \brief Set the local instances. This method is relevant when we want to expose local class instances to the app_builder. \remark When the constructor app_builder(tmp_type_context & ctx) is used the initialization can be performed outside. */ void set_local_instances(list const & insts); }; }