/- Copyright (c) 2016 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn The definition of pointed types. This file is here to avoid circularities in the import graph -/ prelude import init.trunc open eq equiv is_equiv is_trunc structure pointed [class] (A : Type) := (point : A) structure pType := (carrier : Type) (Point : carrier) notation `Type*` := pType namespace pointed attribute pType.carrier [coercion] variables {A : Type} definition pt [reducible] [unfold 2] [H : pointed A] := point A definition Point [reducible] [unfold 1] (A : Type*) := pType.Point A definition carrier [reducible] [unfold 1] (A : Type*) := pType.carrier A protected definition Mk [constructor] {A : Type} (a : A) := pType.mk A a protected definition MK [constructor] (A : Type) (a : A) := pType.mk A a protected definition mk' [constructor] (A : Type) [H : pointed A] : Type* := pType.mk A (point A) definition pointed_carrier [instance] [constructor] (A : Type*) : pointed A := pointed.mk (Point A) end pointed open pointed section universe variable u structure ptrunctype (n : ℕ₋₂) extends trunctype.{u} n, pType.{u} definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (X : ptrunctype n) : is_trunc n (ptrunctype.to_pType X) := trunctype.struct X end notation n `-Type*` := ptrunctype n abbreviation pSet [parsing_only] := 0-Type* notation `Set*` := pSet namespace pointed protected definition ptrunctype.mk' [constructor] (n : ℕ₋₂) (A : Type) [pointed A] [is_trunc n A] : n-Type* := ptrunctype.mk A _ pt protected definition pSet.mk [constructor] := @ptrunctype.mk (-1.+1) protected definition pSet.mk' [constructor] := ptrunctype.mk' (-1.+1) definition ptrunctype_of_trunctype [constructor] {n : ℕ₋₂} (A : n-Type) (a : A) : n-Type* := ptrunctype.mk A _ a definition ptrunctype_of_pType [constructor] {n : ℕ₋₂} (A : Type*) (H : is_trunc n A) : n-Type* := ptrunctype.mk A _ pt definition pSet_of_Set [constructor] (A : Set) (a : A) : Set* := ptrunctype.mk A _ a definition pSet_of_pType [constructor] (A : Type*) (H : is_set A) : Set* := ptrunctype.mk A _ pt attribute ptrunctype._trans_of_to_pType ptrunctype.to_pType ptrunctype.to_trunctype [unfold 2] -- Any contractible type is pointed definition pointed_of_is_contr [instance] [priority 800] [constructor] (A : Type) [H : is_contr A] : pointed A := pointed.mk !center end pointed /- pointed maps -/ structure ppi (A : Type*) (P : A → Type*) := (to_fun : Π a : A, P a) (resp_pt : to_fun (Point A) = Point (P (Point A))) -- definition pmap (A B : Type*) := @ppi A (λa, B) structure pmap (A B : Type*) := (to_fun : A → B) (resp_pt : to_fun (Point A) = Point B) namespace pointed abbreviation respect_pt [unfold 3] := @pmap.resp_pt notation `map₊` := pmap infix ` →* `:30 := pmap attribute pmap.to_fun ppi.to_fun [coercion] notation `Π*` binders `, ` r:(scoped P, ppi _ P) := r -- definition pmap.mk [constructor] {A B : Type*} (f : A → B) (p : f pt = pt) : A →* B := -- ppi.mk f p -- definition pmap.to_fun [coercion] [unfold 3] {A B : Type*} (f : A →* B) : A → B := f end pointed open pointed /- pointed homotopies -/ structure phomotopy {A B : Type*} (f g : A →* B) := (homotopy : f ~ g) (homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f) namespace pointed variables {A B : Type*} {f g : A →* B} infix ` ~* `:50 := phomotopy abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a := phomotopy.homotopy p /- pointed equivalences -/ structure pequiv (A B : Type*) extends equiv A B, pmap A B attribute pequiv._trans_of_to_pmap pequiv._trans_of_to_equiv pequiv.to_pmap pequiv.to_equiv [unfold 3] attribute pequiv.to_is_equiv [instance] attribute pequiv.to_pmap [coercion] infix ` ≃* `:25 := pequiv end pointed