-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Jakob von Raumer -- Ported from Coq HoTT -- TODO: take a look at the Coq tricks import hott.path hott.equiv open path set_option pp.universes true -- Funext -- ------ -- Define function extensionality as a type class inductive funext.{l} [class] : Type.{l+3} := mk : (Π (A : Type.{l+1}) (P : A → Type.{l+2}) (f g : Π x, P x), IsEquiv (@apD10 A P f g)) → funext.{l} namespace funext context universe l parameters [F : funext.{l}] {A : Type.{l+1}} {P : A → Type.{l+2}} (f g : Π x, P x) protected definition ap [instance] : IsEquiv (@apD10 A P f g) := rec_on F (λ (H : Π A P f g, _), !H) definition path_forall : f ∼ g → f ≈ g := @IsEquiv.inv _ _ (@apD10 A P f g) ap end definition path_forall2 [F : funext] {A B : Type} {P : A → B → Type} (f g : Πx y, P x y) : (Πx y, f x y ≈ g x y) → f ≈ g := λ E, path_forall f g (λx, path_forall (f x) (g x) (E x)) end funext