/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad The power function on the natural numbers. -/ import data.nat.basic data.nat.order data.nat.div data.nat.gcd algebra.ring_power namespace nat section migrate_algebra open [classes] algebra local attribute nat.comm_semiring [instance] local attribute nat.linear_ordered_semiring [instance] definition pow (a : ℕ) (n : ℕ) : ℕ := algebra.pow a n infix ^ := pow theorem pow_le_pow_of_le {x y : ℕ} (i : ℕ) (H : x ≤ y) : x^i ≤ y^i := algebra.pow_le_pow_of_le i !zero_le H migrate from algebra with nat replacing dvd → dvd, has_le.ge → ge, has_lt.gt → gt, pow → pow hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos, add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le, le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right, pow_nonneg_of_nonneg end migrate_algebra -- generalize to semirings? theorem le_pow_self {x : ℕ} (H : x > 1) : ∀ i, i ≤ x^i | 0 := !zero_le | (succ j) := have xpos : x > 0, from lt.trans zero_lt_one H, have xjge1 : x^j ≥ 1, from succ_le_of_lt (pow_pos_of_pos _ xpos), have xge2 : x ≥ 2, from succ_le_of_lt H, calc succ j = j + 1 : rfl ... ≤ x^j + 1 : add_le_add_right (le_pow_self j) ... ≤ x^j + x^j : add_le_add_left xjge1 ... = x^j * (1 + 1) : by rewrite [mul.left_distrib, *mul_one] ... = x^j * 2 : rfl ... ≤ x^j * x : mul_le_mul_left _ xge2 ... = x^(succ j) : rfl -- TODO: eventually this will be subsumed under the algebraic theorems theorem mul_self_eq_pow_2 (a : nat) : a * a = pow a 2 := show a * a = pow a (succ (succ zero)), from by rewrite [*pow_succ, *pow_zero, one_mul] theorem pow_cancel_left : ∀ {a b c : nat}, a > 1 → pow a b = pow a c → b = c | a 0 0 h₁ h₂ := rfl | a (succ b) 0 h₁ h₂ := assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right h₂), assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, absurd h₁ !lt.irrefl | a 0 (succ c) h₁ h₂ := assert aeq1 : a = 1, by rewrite [pow_succ' at h₂, pow_zero at h₂]; exact (eq_one_of_mul_eq_one_right (eq.symm h₂)), assert h₁ : 1 < 1, by rewrite [aeq1 at h₁]; exact h₁, absurd h₁ !lt.irrefl | a (succ b) (succ c) h₁ h₂ := assert ane0 : a ≠ 0, from assume aeq0, by rewrite [aeq0 at h₁]; exact (absurd h₁ dec_trivial), assert beqc : pow a b = pow a c, by rewrite [*pow_succ' at h₂]; exact (eq_of_mul_eq_mul_left (pos_of_ne_zero ane0) h₂), by rewrite [pow_cancel_left h₁ beqc] theorem pow_div_cancel : ∀ {a b : nat}, a ≠ 0 → pow a (succ b) div a = pow a b | a 0 h := by rewrite [pow_succ', pow_zero, mul_one, div_self (pos_of_ne_zero h)] | a (succ b) h := by rewrite [pow_succ', mul_div_cancel_left _ (pos_of_ne_zero h)] lemma dvd_pow : ∀ (i : nat) {n : nat}, n > 0 → i ∣ i^n | i 0 h := absurd h !lt.irrefl | i (succ n) h := by rewrite [pow_succ]; apply dvd_mul_left lemma dvd_pow_of_dvd_of_pos : ∀ {i j n : nat}, i ∣ j → n > 0 → i ∣ j^n | i j 0 h₁ h₂ := absurd h₂ !lt.irrefl | i j (succ n) h₁ h₂ := by rewrite [pow_succ]; apply dvd_mul_of_dvd_right h₁ lemma pow_mod_eq_zero (i : nat) {n : nat} (h : n > 0) : (i^n) mod i = 0 := iff.mp !dvd_iff_mod_eq_zero (dvd_pow i h) lemma coprime_pow_right {a b} : ∀ n, coprime b a → coprime b (a^n) | 0 h := !comprime_one_right | (succ n) h := begin rewrite [pow_succ], apply coprime_mul_right, exact coprime_pow_right n h, exact h end lemma coprime_pow_left {a b} : ∀ n, coprime b a → coprime (b^n) a := λ n h, coprime_swap (coprime_pow_right n (coprime_swap h)) end nat