/- Copyright (c) 2014 Parikshit Khanna. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.list.basic Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura Basic properties of lists. -/ import logic tools.helper_tactics data.nat.basic algebra.function open eq.ops helper_tactics nat prod function option inductive list (T : Type) : Type := | nil {} : list T | cons : T → list T → list T namespace list notation h :: t := cons h t notation `[` l:(foldr `,` (h t, cons h t) nil `]`) := l variable {T : Type} /- append -/ definition append : list T → list T → list T | [] l := l | (h :: s) t := h :: (append s t) notation l₁ ++ l₂ := append l₁ l₂ theorem append_nil_left (t : list T) : [] ++ t = t theorem append_cons (x : T) (s t : list T) : (x::s) ++ t = x::(s ++ t) theorem append_nil_right : ∀ (t : list T), t ++ [] = t | [] := rfl | (a :: l) := calc (a :: l) ++ [] = a :: (l ++ []) : rfl ... = a :: l : append_nil_right l theorem append.assoc : ∀ (s t u : list T), s ++ t ++ u = s ++ (t ++ u) | [] t u := rfl | (a :: l) t u := show a :: (l ++ t ++ u) = (a :: l) ++ (t ++ u), by rewrite (append.assoc l t u) /- length -/ definition length : list T → nat | [] := 0 | (a :: l) := length l + 1 theorem length_nil : length (@nil T) = 0 theorem length_cons (x : T) (t : list T) : length (x::t) = length t + 1 theorem length_append : ∀ (s t : list T), length (s ++ t) = length s + length t | [] t := calc length ([] ++ t) = length t : rfl ... = length [] + length t : zero_add | (a :: s) t := calc length (a :: s ++ t) = length (s ++ t) + 1 : rfl ... = length s + length t + 1 : length_append ... = (length s + 1) + length t : add.succ_left ... = length (a :: s) + length t : rfl theorem eq_nil_of_length_eq_zero : ∀ {l : list T}, length l = 0 → l = [] | [] H := rfl | (a::s) H := nat.no_confusion H -- add_rewrite length_nil length_cons /- concat -/ definition concat : Π (x : T), list T → list T | a [] := [a] | a (b :: l) := b :: concat a l theorem concat_nil (x : T) : concat x [] = [x] theorem concat_cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l) theorem concat_eq_append (a : T) : ∀ (l : list T), concat a l = l ++ [a] | [] := rfl | (b :: l) := show b :: (concat a l) = (b :: l) ++ (a :: []), by rewrite concat_eq_append -- add_rewrite append_nil append_cons /- reverse -/ definition reverse : list T → list T | [] := [] | (a :: l) := concat a (reverse l) theorem reverse_nil : reverse (@nil T) = [] theorem reverse_cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l) theorem reverse_singleton (x : T) : reverse [x] = [x] theorem reverse_append : ∀ (s t : list T), reverse (s ++ t) = (reverse t) ++ (reverse s) | [] t2 := calc reverse ([] ++ t2) = reverse t2 : rfl ... = (reverse t2) ++ [] : append_nil_right ... = (reverse t2) ++ (reverse []) : by rewrite reverse_nil | (a2 :: s2) t2 := calc reverse ((a2 :: s2) ++ t2) = concat a2 (reverse (s2 ++ t2)) : rfl ... = concat a2 (reverse t2 ++ reverse s2) : reverse_append ... = (reverse t2 ++ reverse s2) ++ [a2] : concat_eq_append ... = reverse t2 ++ (reverse s2 ++ [a2]) : append.assoc ... = reverse t2 ++ concat a2 (reverse s2) : concat_eq_append ... = reverse t2 ++ reverse (a2 :: s2) : rfl theorem reverse_reverse : ∀ (l : list T), reverse (reverse l) = l | [] := rfl | (a :: l) := calc reverse (reverse (a :: l)) = reverse (concat a (reverse l)) : rfl ... = reverse (reverse l ++ [a]) : concat_eq_append ... = reverse [a] ++ reverse (reverse l) : reverse_append ... = reverse [a] ++ l : reverse_reverse ... = a :: l : rfl theorem concat_eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) := calc concat x l = concat x (reverse (reverse l)) : reverse_reverse ... = reverse (x :: reverse l) : rfl /- head and tail -/ definition head [h : inhabited T] : list T → T | [] := arbitrary T | (a :: l) := a theorem head_cons [h : inhabited T] (a : T) (l : list T) : head (a::l) = a theorem head_append [h : inhabited T] (t : list T) : ∀ {s : list T}, s ≠ [] → head (s ++ t) = head s | [] H := absurd rfl H | (a :: s) H := show head (a :: (s ++ t)) = head (a :: s), by rewrite head_cons definition tail : list T → list T | [] := [] | (a :: l) := l theorem tail_nil : tail (@nil T) = [] theorem tail_cons (a : T) (l : list T) : tail (a::l) = l theorem cons_head_tail [h : inhabited T] {l : list T} : l ≠ [] → (head l)::(tail l) = l := list.cases_on l (assume H : [] ≠ [], absurd rfl H) (take x l, assume H : x::l ≠ [], rfl) /- list membership -/ definition mem : T → list T → Prop | a [] := false | a (b :: l) := a = b ∨ mem a l notation e ∈ s := mem e s notation e ∉ s := ¬ e ∈ s theorem mem_nil (x : T) : x ∈ [] ↔ false := iff.rfl theorem not_mem_nil (x : T) : x ∉ [] := iff.mp !mem_nil theorem mem_cons (x : T) (l : list T) : x ∈ x :: l := or.inl rfl theorem mem_cons_of_mem (y : T) {x : T} {l : list T} : x ∈ l → x ∈ y :: l := assume H, or.inr H theorem mem_cons_iff (x y : T) (l : list T) : x ∈ y::l ↔ (x = y ∨ x ∈ l) := iff.rfl theorem eq_or_mem_of_mem_cons {x y : T} {l : list T} : x ∈ y::l → x = y ∨ x ∈ l := assume h, h theorem mem_singleton {x a : T} : x ∈ [a] → x = a := assume h : x ∈ [a], or.elim (eq_or_mem_of_mem_cons h) (λ xeqa : x = a, xeqa) (λ xinn : x ∈ [], absurd xinn !not_mem_nil) theorem mem_of_mem_cons_of_mem {a b : T} {l : list T} : a ∈ b::l → b ∈ l → a ∈ l := assume ainbl binl, or.elim (eq_or_mem_of_mem_cons ainbl) (λ aeqb : a = b, by rewrite [aeqb]; exact binl) (λ ainl : a ∈ l, ainl) theorem mem_or_mem_of_mem_append {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := list.induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, assume H1 : x ∈ y::s ++ t, have H2 : x = y ∨ x ∈ s ++ t, from H1, have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or_of_or_of_imp_right H2 IH, iff.elim_right or.assoc H3) theorem mem_append_of_mem_or_mem {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := list.induction_on s (take H, or.elim H false.elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, assume H : x ∈ y::s ∨ x ∈ t, or.elim H (assume H1, or.elim (eq_or_mem_of_mem_cons H1) (take H2 : x = y, or.inl H2) (take H2 : x ∈ s, or.inr (IH (or.inl H2)))) (assume H1 : x ∈ t, or.inr (IH (or.inr H1)))) theorem mem_append_iff (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem_or_mem_of_mem_append mem_append_of_mem_or_mem theorem not_mem_of_not_mem_append_left {x : T} {s t : list T} : x ∉ s++t → x ∉ s := λ nxinst xins, absurd (mem_append_of_mem_or_mem (or.inl xins)) nxinst theorem not_mem_of_not_mem_append_right {x : T} {s t : list T} : x ∉ s++t → x ∉ t := λ nxinst xint, absurd (mem_append_of_mem_or_mem (or.inr xint)) nxinst theorem not_mem_append {x : T} {s t : list T} : x ∉ s → x ∉ t → x ∉ s++t := λ nxins nxint xinst, or.elim (mem_or_mem_of_mem_append xinst) (λ xins, absurd xins nxins) (λ xint, absurd xint nxint) local attribute mem [reducible] local attribute append [reducible] theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) := list.induction_on l (take H : x ∈ [], false.elim (iff.elim_left !mem_nil H)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t), assume H : x ∈ y::l, or.elim (eq_or_mem_of_mem_cons H) (assume H1 : x = y, exists.intro [] (!exists.intro (H1 ▸ rfl))) (assume H1 : x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1, obtain t (H3 : l = s ++ (x::t)), from H2, have H4 : y :: l = (y::s) ++ (x::t), from H3 ▸ rfl, !exists.intro (!exists.intro H4))) theorem mem_append_left {a : T} {l₁ : list T} (l₂ : list T) : a ∈ l₁ → a ∈ l₁ ++ l₂ := assume ainl₁, mem_append_of_mem_or_mem (or.inl ainl₁) theorem mem_append_right {a : T} (l₁ : list T) {l₂ : list T} : a ∈ l₂ → a ∈ l₁ ++ l₂ := assume ainl₂, mem_append_of_mem_or_mem (or.inr ainl₂) definition decidable_mem [instance] [H : decidable_eq T] (x : T) (l : list T) : decidable (x ∈ l) := list.rec_on l (decidable.inr (not_of_iff_false !mem_nil)) (take (h : T) (l : list T) (iH : decidable (x ∈ l)), show decidable (x ∈ h::l), from decidable.rec_on iH (assume Hp : x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, decidable.inl (or.inr Hp))) (assume Hn : ¬x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, have H1 : ¬(x = h ∨ x ∈ l), from assume H2 : x = h ∨ x ∈ l, or.elim H2 (assume Heq, absurd Heq Hne) (assume Hp, absurd Hp Hn), have H2 : ¬x ∈ h::l, from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) H1, decidable.inr H2))) theorem mem_of_ne_of_mem {x y : T} {l : list T} (H₁ : x ≠ y) (H₂ : x ∈ y :: l) : x ∈ l := or.elim (eq_or_mem_of_mem_cons H₂) (λe, absurd e H₁) (λr, r) theorem not_eq_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ≠ b := assume nin aeqb, absurd (or.inl aeqb) nin theorem not_mem_of_not_mem {a b : T} {l : list T} : a ∉ b::l → a ∉ l := assume nin nainl, absurd (or.inr nainl) nin definition sublist (l₁ l₂ : list T) := ∀ ⦃a : T⦄, a ∈ l₁ → a ∈ l₂ infix `⊆`:50 := sublist theorem nil_sub (l : list T) : [] ⊆ l := λ b i, false.elim (iff.mp (mem_nil b) i) theorem sub.refl (l : list T) : l ⊆ l := λ b i, i theorem sub.trans {l₁ l₂ l₃ : list T} (H₁ : l₁ ⊆ l₂) (H₂ : l₂ ⊆ l₃) : l₁ ⊆ l₃ := λ b i, H₂ (H₁ i) theorem sub_cons (a : T) (l : list T) : l ⊆ a::l := λ b i, or.inr i theorem sub_of_cons_sub {a : T} {l₁ l₂ : list T} : a::l₁ ⊆ l₂ → l₁ ⊆ l₂ := λ s b i, s b (mem_cons_of_mem _ i) theorem cons_sub_cons {l₁ l₂ : list T} (a : T) (s : l₁ ⊆ l₂) : (a::l₁) ⊆ (a::l₂) := λ b Hin, or.elim (eq_or_mem_of_mem_cons Hin) (λ e : b = a, or.inl e) (λ i : b ∈ l₁, or.inr (s i)) theorem sub_append_left (l₁ l₂ : list T) : l₁ ⊆ l₁++l₂ := λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inl i) theorem sub_append_right (l₁ l₂ : list T) : l₂ ⊆ l₁++l₂ := λ b i, iff.mp' (mem_append_iff b l₁ l₂) (or.inr i) theorem sub_cons_of_sub (a : T) {l₁ l₂ : list T} : l₁ ⊆ l₂ → l₁ ⊆ (a::l₂) := λ (s : l₁ ⊆ l₂) (x : T) (i : x ∈ l₁), or.inr (s i) theorem sub_app_of_sub_left (l l₁ l₂ : list T) : l ⊆ l₁ → l ⊆ l₁++l₂ := λ (s : l ⊆ l₁) (x : T) (xinl : x ∈ l), have xinl₁ : x ∈ l₁, from s xinl, mem_append_of_mem_or_mem (or.inl xinl₁) theorem sub_app_of_sub_right (l l₁ l₂ : list T) : l ⊆ l₂ → l ⊆ l₁++l₂ := λ (s : l ⊆ l₂) (x : T) (xinl : x ∈ l), have xinl₁ : x ∈ l₂, from s xinl, mem_append_of_mem_or_mem (or.inr xinl₁) theorem cons_sub_of_sub_of_mem {a : T} {l m : list T} : a ∈ m → l ⊆ m → a::l ⊆ m := λ (ainm : a ∈ m) (lsubm : l ⊆ m) (x : T) (xinal : x ∈ a::l), or.elim (eq_or_mem_of_mem_cons xinal) (assume xeqa : x = a, eq.rec_on (eq.symm xeqa) ainm) (assume xinl : x ∈ l, lsubm xinl) theorem app_sub_of_sub_of_sub {l₁ l₂ l : list T} : l₁ ⊆ l → l₂ ⊆ l → l₁++l₂ ⊆ l := λ (l₁subl : l₁ ⊆ l) (l₂subl : l₂ ⊆ l) (x : T) (xinl₁l₂ : x ∈ l₁++l₂), or.elim (mem_or_mem_of_mem_append xinl₁l₂) (λ xinl₁ : x ∈ l₁, l₁subl xinl₁) (λ xinl₂ : x ∈ l₂, l₂subl xinl₂) /- find -/ section variable [H : decidable_eq T] include H definition find : T → list T → nat | a [] := 0 | a (b :: l) := if a = b then 0 else succ (find a l) theorem find_nil (x : T) : find x [] = 0 theorem find_cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l) theorem find_cons_of_eq {x y : T} (l : list T) : x = y → find x (y::l) = 0 := assume e, if_pos e theorem find_cons_of_ne {x y : T} (l : list T) : x ≠ y → find x (y::l) = succ (find x l) := assume n, if_neg n theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l := list.rec_on l (assume P₁ : ¬x ∈ [], _) (take y l, assume iH : ¬x ∈ l → find x l = length l, assume P₁ : ¬x ∈ y::l, have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (not_iff_not_of_iff !mem_cons_iff) P₁, have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or_iff_not_and_not P₂), calc find x (y::l) = if x = y then 0 else succ (find x l) : !find_cons ... = succ (find x l) : if_neg (and.elim_left P₃) ... = succ (length l) : {iH (and.elim_right P₃)} ... = length (y::l) : !length_cons⁻¹) end /- nth element -/ section nth definition nth : list T → nat → option T | [] n := none | (a :: l) 0 := some a | (a :: l) (n+1) := nth l n theorem nth_zero (a : T) (l : list T) : nth (a :: l) 0 = some a theorem nth_succ (a : T) (l : list T) (n : nat) : nth (a::l) (succ n) = nth l n open decidable theorem find_nth [h : decidable_eq T] {a : T} : ∀ {l}, a ∈ l → nth l (find a l) = some a | [] ain := absurd ain !not_mem_nil | (b::l) ainbl := by_cases (λ aeqb : a = b, by rewrite [find_cons_of_eq _ aeqb, nth_zero, aeqb]) (λ aneb : a ≠ b, or.elim (eq_or_mem_of_mem_cons ainbl) (λ aeqb : a = b, absurd aeqb aneb) (λ ainl : a ∈ l, by rewrite [find_cons_of_ne _ aneb, nth_succ, find_nth ainl])) definition inth [h : inhabited T] (l : list T) (n : nat) : T := match nth l n with | some a := a | none := arbitrary T end theorem inth_zero [h : inhabited T] (a : T) (l : list T) : inth (a :: l) 0 = a theorem inth_succ [h : inhabited T] (a : T) (l : list T) (n : nat) : inth (a::l) (n+1) = inth l n end nth open decidable definition has_decidable_eq {A : Type} [H : decidable_eq A] : ∀ l₁ l₂ : list A, decidable (l₁ = l₂) | [] [] := inl rfl | [] (b::l₂) := inr (λ H, list.no_confusion H) | (a::l₁) [] := inr (λ H, list.no_confusion H) | (a::l₁) (b::l₂) := match H a b with | inl Hab := match has_decidable_eq l₁ l₂ with | inl He := inl (eq.rec_on Hab (eq.rec_on He rfl)) | inr Hn := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Ht Hn)) end | inr Hnab := inr (λ H, list.no_confusion H (λ Hab Ht, absurd Hab Hnab)) end /- quasiequal a l l' means that l' is exactly l, with a added once somewhere -/ section qeq variable {A : Type} inductive qeq (a : A) : list A → list A → Prop := | qhead : ∀ l, qeq a l (a::l) | qcons : ∀ (b : A) {l l' : list A}, qeq a l l' → qeq a (b::l) (b::l') open qeq notation l' `≈`:50 a `|` l:50 := qeq a l l' theorem qeq_app : ∀ (l₁ : list A) (a : A) (l₂ : list A), l₁++(a::l₂) ≈ a|l₁++l₂ | [] a l₂ := qhead a l₂ | (x::xs) a l₂ := qcons x (qeq_app xs a l₂) theorem mem_head_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → a ∈ l₁ := take q, qeq.induction_on q (λ l, !mem_cons) (λ b l l' q r, or.inr r) theorem mem_tail_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₂ → x ∈ l₁ := take q, qeq.induction_on q (λ l x i, or.inr i) (λ b l l' q r x xinbl, or.elim (eq_or_mem_of_mem_cons xinbl) (λ xeqb : x = b, xeqb ▸ mem_cons x l') (λ xinl : x ∈ l, or.inr (r x xinl))) theorem mem_cons_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → ∀ x, x ∈ l₁ → x ∈ a::l₂ := take q, qeq.induction_on q (λ l x i, i) (λ b l l' q r x xinbl', or.elim (eq_or_mem_of_mem_cons xinbl') (λ xeqb : x = b, xeqb ▸ or.inr (mem_cons x l)) (λ xinl' : x ∈ l', or.elim (eq_or_mem_of_mem_cons (r x xinl')) (λ xeqa : x = a, xeqa ▸ mem_cons x (b::l)) (λ xinl : x ∈ l, or.inr (or.inr xinl)))) theorem length_eq_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → length l₁ = succ (length l₂) := take q, qeq.induction_on q (λ l, rfl) (λ b l l' q r, by rewrite [*length_cons, r]) theorem qeq_of_mem {a : A} {l : list A} : a ∈ l → (∃l', l≈a|l') := list.induction_on l (λ h : a ∈ nil, absurd h (not_mem_nil a)) (λ x xs r ainxxs, or.elim (eq_or_mem_of_mem_cons ainxxs) (λ aeqx : a = x, assert aux : ∃ l, x::xs≈x|l, from exists.intro xs (qhead x xs), by rewrite aeqx; exact aux) (λ ainxs : a ∈ xs, have ex : ∃l', xs ≈ a|l', from r ainxs, obtain (l' : list A) (q : xs ≈ a|l'), from ex, have q₂ : x::xs ≈ a | x::l', from qcons x q, exists.intro (x::l') q₂)) theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) := take q, qeq.induction_on q (λ t, have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl, exists.intro [] (exists.intro t aux)) (λ b t t' q r, obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r, have aux : b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂), begin rewrite [and.elim_right h, and.elim_left h], exact (and.intro rfl rfl) end, exists.intro (b::l₁) (exists.intro l₂ aux)) theorem sub_of_mem_of_sub_of_qeq {a : A} {l : list A} {u v : list A} : a ∉ l → a::l ⊆ v → v≈a|u → l ⊆ u := λ (nainl : a ∉ l) (s : a::l ⊆ v) (q : v≈a|u) (x : A) (xinl : x ∈ l), have xinv : x ∈ v, from s (or.inr xinl), have xinau : x ∈ a::u, from mem_cons_of_qeq q x xinv, or.elim (eq_or_mem_of_mem_cons xinau) (λ xeqa : x = a, absurd (xeqa ▸ xinl) nainl) (λ xinu : x ∈ u, xinu) end qeq end list attribute list.has_decidable_eq [instance] attribute list.decidable_mem [instance]