/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.sqrt Authors: Leonardo de Moura Very simple (sqrt n) function that returns s s.t. s*s ≤ n ≤ s*s + s + s -/ import data.nat.order data.nat.sub namespace nat open decidable -- This is the simplest possible function that just performs a linear search definition sqrt_aux : nat → nat → nat | 0 n := 0 | (succ s) n := if (succ s)*(succ s) ≤ n then succ s else sqrt_aux s n theorem sqrt_aux_suc_of_pos {s n} : (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = (succ s) := assume h, if_pos h theorem sqrt_aux_suc_of_neg {s n} : ¬ (succ s)*(succ s) ≤ n → sqrt_aux (succ s) n = sqrt_aux s n := assume h, if_neg h definition sqrt (n : nat) : nat := sqrt_aux n n theorem sqrt_aux_lower : ∀ {s n : nat}, s ≤ n → sqrt_aux s n * sqrt_aux s n ≤ n | 0 n h := h | (succ s) n h := by_cases (λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_suc_of_pos h₁]; exact h₁) (λ h₂ : ¬ (succ s)*(succ s) ≤ n, assert aux : s ≤ n, from lt.step (lt_of_succ_le h), by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_lower aux)) theorem sqrt_lower (n : nat) : sqrt n * sqrt n ≤ n := sqrt_aux_lower (le.refl n) theorem sqrt_aux_upper : ∀ {s n : nat}, n ≤ s*s + s + s → n ≤ sqrt_aux s n * sqrt_aux s n + sqrt_aux s n + sqrt_aux s n | 0 n h := h | (succ s) n h := by_cases (λ h₁ : (succ s)*(succ s) ≤ n, by rewrite [sqrt_aux_suc_of_pos h₁]; exact h) (λ h₂ : ¬ (succ s)*(succ s) ≤ n, assert h₃ : n < (succ s) * (succ s), from lt_of_not_le h₂, assert h₄ : n ≤ s * s + s + s, by rewrite [succ_mul_succ_eq at h₃]; exact h₃, by rewrite [sqrt_aux_suc_of_neg h₂]; exact (sqrt_aux_upper h₄)) theorem sqrt_upper (n : nat) : n ≤ sqrt n * sqrt n + sqrt n + sqrt n := have aux : n ≤ n*n + n + n, from le_add_of_le_right (le_add_of_le_left (le.refl n)), sqrt_aux_upper aux theorem sqrt_aux_eq : ∀ n, sqrt_aux n (n*n) = n | 0 := rfl | (succ n) := if_pos !le.refl end nat