-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import logic ..prod struc.relation import tools.fake_simplifier open prod eq_ops open fake_simplifier namespace quotient -- auxliary facts about products -- ----------------------------- -- ### flip definition flip {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a) theorem flip_def {A B : Type} (a : A × B) : flip a = pair (pr2 a) (pr1 a) := refl (flip a) theorem flip_pair {A B : Type} (a : A) (b : B) : flip (pair a b) = pair b a := rfl theorem flip_pr1 {A B : Type} (a : A × B) : pr1 (flip a) = pr2 a := rfl theorem flip_pr2 {A B : Type} (a : A × B) : pr2 (flip a) = pr1 a := rfl theorem flip_flip {A B : Type} (a : A × B) : flip (flip a) = a := prod.destruct a (take x y, rfl) theorem P_flip {A B : Type} {P : A → B → Prop} {a : A × B} (H : P (pr1 a) (pr2 a)) : P (pr2 (flip a)) (pr1 (flip a)) := (symm (flip_pr1 a)) ▸ (symm (flip_pr2 a)) ▸ H theorem flip_inj {A B : Type} {a b : A × B} (H : flip a = flip b) : a = b := have H2 : flip (flip a) = flip (flip b), from congr_arg flip H, show a = b, from (flip_flip a) ▸ (flip_flip b) ▸ H2 -- ### coordinatewise unary maps definition map_pair {A B : Type} (f : A → B) (a : A × A) : B × B := pair (f (pr1 a)) (f (pr2 a)) theorem map_pair_def {A B : Type} (f : A → B) (a : A × A) : map_pair f a = pair (f (pr1 a)) (f (pr2 a)) := rfl theorem map_pair_pair {A B : Type} (f : A → B) (a a' : A) : map_pair f (pair a a') = pair (f a) (f a') := (pr1_pair a a') ▸ (pr2_pair a a') ▸ (rfl) theorem map_pair_pr1 {A B : Type} (f : A → B) (a : A × A) : pr1 (map_pair f a) = f (pr1 a) := pr1_pair _ _ theorem map_pair_pr2 {A B : Type} (f : A → B) (a : A × A) : pr2 (map_pair f a) = f (pr2 a) := pr2_pair _ _ -- ### coordinatewise binary maps definition map_pair2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : C × C := pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) theorem map_pair2_def {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : map_pair2 f a b = pair (f (pr1 a) (pr1 b)) (f (pr2 a) (pr2 b)) := rfl theorem map_pair2_pair {A B C : Type} (f : A → B → C) (a a' : A) (b b' : B) : map_pair2 f (pair a a') (pair b b') = pair (f a b) (f a' b') := calc map_pair2 f (pair a a') (pair b b') = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) (pr2 (pair b b'))) : {pr1_pair b b'} ... = pair (f (pr1 (pair a a')) b) (f (pr2 (pair a a')) b') : {pr2_pair b b'} ... = pair (f (pr1 (pair a a')) b) (f a' b') : {pr2_pair a a'} ... = pair (f a b) (f a' b') : {pr1_pair a a'} theorem map_pair2_pr1 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : pr1 (map_pair2 f a b) = f (pr1 a) (pr1 b) := pr1_pair _ _ theorem map_pair2_pr2 {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : pr2 (map_pair2 f a b) = f (pr2 a) (pr2 b) := pr2_pair _ _ theorem map_pair2_flip {A B C : Type} (f : A → B → C) (a : A × A) (b : B × B) : flip (map_pair2 f a b) = map_pair2 f (flip a) (flip b) := have Hx : pr1 (flip (map_pair2 f a b)) = pr1 (map_pair2 f (flip a) (flip b)), from calc pr1 (flip (map_pair2 f a b)) = pr2 (map_pair2 f a b) : flip_pr1 _ ... = f (pr2 a) (pr2 b) : map_pair2_pr2 f a b ... = f (pr1 (flip a)) (pr2 b) : {symm (flip_pr1 a)} ... = f (pr1 (flip a)) (pr1 (flip b)) : {symm (flip_pr1 b)} ... = pr1 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr1 f _ _), have Hy : pr2 (flip (map_pair2 f a b)) = pr2 (map_pair2 f (flip a) (flip b)), from calc pr2 (flip (map_pair2 f a b)) = pr1 (map_pair2 f a b) : flip_pr2 _ ... = f (pr1 a) (pr1 b) : map_pair2_pr1 f a b ... = f (pr2 (flip a)) (pr1 b) : {symm (flip_pr2 a)} ... = f (pr2 (flip a)) (pr2 (flip b)) : {symm (flip_pr2 b)} ... = pr2 (map_pair2 f (flip a) (flip b)) : symm (map_pair2_pr2 f _ _), pair_eq Hx Hy -- add_rewrite flip_pr1 flip_pr2 flip_pair -- add_rewrite map_pair_pr1 map_pair_pr2 map_pair_pair -- add_rewrite map_pair2_pr1 map_pair2_pr2 map_pair2_pair theorem map_pair2_comm {A B : Type} {f : A → A → B} (Hcomm : ∀a b : A, f a b = f b a) (v w : A × A) : map_pair2 f v w = map_pair2 f w v := have Hx : pr1 (map_pair2 f v w) = pr1 (map_pair2 f w v), from calc pr1 (map_pair2 f v w) = f (pr1 v) (pr1 w) : map_pair2_pr1 f v w ... = f (pr1 w) (pr1 v) : Hcomm _ _ ... = pr1 (map_pair2 f w v) : symm (map_pair2_pr1 f w v), have Hy : pr2 (map_pair2 f v w) = pr2 (map_pair2 f w v), from calc pr2 (map_pair2 f v w) = f (pr2 v) (pr2 w) : map_pair2_pr2 f v w ... = f (pr2 w) (pr2 v) : Hcomm _ _ ... = pr2 (map_pair2 f w v) : symm (map_pair2_pr2 f w v), pair_eq Hx Hy theorem map_pair2_assoc {A : Type} {f : A → A → A} (Hassoc : ∀a b c : A, f (f a b) c = f a (f b c)) (u v w : A × A) : map_pair2 f (map_pair2 f u v) w = map_pair2 f u (map_pair2 f v w) := have Hx : pr1 (map_pair2 f (map_pair2 f u v) w) = pr1 (map_pair2 f u (map_pair2 f v w)), from calc pr1 (map_pair2 f (map_pair2 f u v) w) = f (pr1 (map_pair2 f u v)) (pr1 w) : map_pair2_pr1 f _ _ ... = f (f (pr1 u) (pr1 v)) (pr1 w) : {map_pair2_pr1 f _ _} ... = f (pr1 u) (f (pr1 v) (pr1 w)) : Hassoc (pr1 u) (pr1 v) (pr1 w) ... = f (pr1 u) (pr1 (map_pair2 f v w)) : {symm (map_pair2_pr1 f _ _)} ... = pr1 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr1 f _ _), have Hy : pr2 (map_pair2 f (map_pair2 f u v) w) = pr2 (map_pair2 f u (map_pair2 f v w)), from calc pr2 (map_pair2 f (map_pair2 f u v) w) = f (pr2 (map_pair2 f u v)) (pr2 w) : map_pair2_pr2 f _ _ ... = f (f (pr2 u) (pr2 v)) (pr2 w) : {map_pair2_pr2 f _ _} ... = f (pr2 u) (f (pr2 v) (pr2 w)) : Hassoc (pr2 u) (pr2 v) (pr2 w) ... = f (pr2 u) (pr2 (map_pair2 f v w)) : {symm (map_pair2_pr2 f _ _)} ... = pr2 (map_pair2 f u (map_pair2 f v w)) : symm (map_pair2_pr2 f _ _), pair_eq Hx Hy theorem map_pair2_id_right {A B : Type} {f : A → B → A} {e : B} (Hid : ∀a : A, f a e = a) (v : A × A) : map_pair2 f v (pair e e) = v := have Hx : pr1 (map_pair2 f v (pair e e)) = pr1 v, from (calc pr1 (map_pair2 f v (pair e e)) = f (pr1 v) (pr1 (pair e e)) : by simp ... = f (pr1 v) e : by simp ... = pr1 v : Hid (pr1 v)), have Hy : pr2 (map_pair2 f v (pair e e)) = pr2 v, from (calc pr2 (map_pair2 f v (pair e e)) = f (pr2 v) (pr2 (pair e e)) : by simp ... = f (pr2 v) e : by simp ... = pr2 v : Hid (pr2 v)), prod_eq Hx Hy theorem map_pair2_id_left {A B : Type} {f : B → A → A} {e : B} (Hid : ∀a : A, f e a = a) (v : A × A) : map_pair2 f (pair e e) v = v := have Hx : pr1 (map_pair2 f (pair e e) v) = pr1 v, from calc pr1 (map_pair2 f (pair e e) v) = f (pr1 (pair e e)) (pr1 v) : by simp ... = f e (pr1 v) : by simp ... = pr1 v : Hid (pr1 v), have Hy : pr2 (map_pair2 f (pair e e) v) = pr2 v, from calc pr2 (map_pair2 f (pair e e) v) = f (pr2 (pair e e)) (pr2 v) : by simp ... = f e (pr2 v) : by simp ... = pr2 v : Hid (pr2 v), prod_eq Hx Hy opaque_hint (hiding flip map_pair map_pair2) end quotient