/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Complete lattices TODO: define dual complete lattice and simplify proof of dual theorems. -/ import algebra.lattice data.set.basic open set variable {A : Type} structure complete_lattice [class] (A : Type) extends lattice A := (Inf : set A → A) (Sup : set A → A) (Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a) (le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s)) (le_Sup : ∀ {a : A} {s : set A}, a ∈ s → le a (Sup s)) (Sup_le : ∀ {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → le a b), le (Sup s) b) section variable [complete_lattice A] definition Inf (S : set A) : A := complete_lattice.Inf S prefix `⨅ `:70 := Inf definition Sup (S : set A) : A := complete_lattice.Sup S prefix `⨆ `:65 := Sup theorem Inf_le {a : A} {s : set A} (H : a ∈ s) : (Inf s) ≤ a := complete_lattice.Inf_le H theorem le_Inf {b : A} {s : set A} (H : ∀ (a : A), a ∈ s → b ≤ a) : b ≤ Inf s := complete_lattice.le_Inf H theorem le_Sup {a : A} {s : set A} (H : a ∈ s) : a ≤ Sup s := complete_lattice.le_Sup H theorem Sup_le {b : A} {s : set A} (H : ∀ (a : A), a ∈ s → a ≤ b) : Sup s ≤ b := complete_lattice.Sup_le H end -- Minimal complete_lattice definition based just on Inf. -- We later show that complete_lattice_Inf is a complete_lattice. structure complete_lattice_Inf [class] (A : Type) extends weak_order A := (Inf : set A → A) (Inf_le : ∀ {a : A} {s : set A}, a ∈ s → le (Inf s) a) (le_Inf : ∀ {b : A} {s : set A}, (∀ (a : A), a ∈ s → le b a) → le b (Inf s)) -- Minimal complete_lattice definition based just on Sup. -- We later show that complete_lattice_Sup is a complete_lattice. structure complete_lattice_Sup [class] (A : Type) extends weak_order A := (Sup : set A → A) (le_Sup : ∀ {a : A} {s : set A}, a ∈ s → le a (Sup s)) (Sup_le : ∀ {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → le a b), le (Sup s) b) namespace complete_lattice_Inf variable [C : complete_lattice_Inf A] include C definition Sup (s : set A) : A := Inf {b | ∀ a, a ∈ s → a ≤ b} local prefix `⨅`:70 := Inf local prefix `⨆`:65 := Sup lemma le_Sup {a : A} {s : set A} : a ∈ s → a ≤ ⨆ s := suppose a ∈ s, le_Inf (show ∀ (b : A), (∀ (a : A), a ∈ s → a ≤ b) → a ≤ b, from take b, assume h, h a `a ∈ s`) lemma Sup_le {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → a ≤ b) : ⨆ s ≤ b := Inf_le h definition inf (a b : A) := ⨅ '{a, b} definition sup (a b : A) := ⨆ '{a, b} local infix `⊓` := inf local infix `⊔` := sup lemma inf_le_left (a b : A) : a ⊓ b ≤ a := Inf_le !mem_insert lemma inf_le_right (a b : A) : a ⊓ b ≤ b := Inf_le (!mem_insert_of_mem !mem_insert) lemma le_inf {a b c : A} : c ≤ a → c ≤ b → c ≤ a ⊓ b := assume h₁ h₂, le_Inf (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (suppose x = a, begin subst x, exact h₁ end) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, begin subst x, exact h₂ end)) lemma le_sup_left (a b : A) : a ≤ a ⊔ b := le_Sup !mem_insert lemma le_sup_right (a b : A) : b ≤ a ⊔ b := le_Sup (!mem_insert_of_mem !mem_insert) lemma sup_le {a b c : A} : a ≤ c → b ≤ c → a ⊔ b ≤ c := assume h₁ h₂, Sup_le (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (suppose x = a, by subst x; assumption) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, by subst x; assumption)) end complete_lattice_Inf -- Every complete_lattice_Inf is a complete_lattice_Sup definition complete_lattice_Inf_to_complete_lattice_Sup [C : complete_lattice_Inf A] : complete_lattice_Sup A := ⦃ complete_lattice_Sup, C ⦄ -- Every complete_lattice_Inf is a complete_lattice definition complete_lattice_Inf_to_complete_lattice [trans_instance] [C : complete_lattice_Inf A] : complete_lattice A := ⦃ complete_lattice, C ⦄ namespace complete_lattice_Sup variable [C : complete_lattice_Sup A] include C definition Inf (s : set A) : A := Sup {b | ∀ a, a ∈ s → b ≤ a} lemma Inf_le {a : A} {s : set A} : a ∈ s → Inf s ≤ a := suppose a ∈ s, Sup_le (show ∀ (b : A), (∀ (a : A), a ∈ s → b ≤ a) → b ≤ a, from take b, assume h, h a `a ∈ s`) lemma le_Inf {b : A} {s : set A} (h : ∀ (a : A), a ∈ s → b ≤ a) : b ≤ Inf s := le_Sup h local prefix `⨅`:70 := Inf local prefix `⨆`:65 := Sup definition inf (a b : A) := ⨅ '{a, b} definition sup (a b : A) := ⨆ '{a, b} local infix `⊓` := inf local infix `⊔` := sup lemma inf_le_left (a b : A) : a ⊓ b ≤ a := Inf_le !mem_insert lemma inf_le_right (a b : A) : a ⊓ b ≤ b := Inf_le (!mem_insert_of_mem !mem_insert) lemma le_inf {a b c : A} : c ≤ a → c ≤ b → c ≤ a ⊓ b := assume h₁ h₂, le_Inf (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (suppose x = a, begin subst x, exact h₁ end) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, begin subst x, exact h₂ end)) lemma le_sup_left (a b : A) : a ≤ a ⊔ b := le_Sup !mem_insert lemma le_sup_right (a b : A) : b ≤ a ⊔ b := le_Sup (!mem_insert_of_mem !mem_insert) lemma sup_le {a b c : A} : a ≤ c → b ≤ c → a ⊔ b ≤ c := assume h₁ h₂, Sup_le (take x, suppose x ∈ '{a, b}, or.elim (eq_or_mem_of_mem_insert this) (assume H : x = a, by subst x; exact h₁) (suppose x ∈ '{b}, assert x = b, from !eq_of_mem_singleton this, by subst x; exact h₂)) end complete_lattice_Sup -- Every complete_lattice_Sup is a complete_lattice_Inf definition complete_lattice_Sup_to_complete_lattice_Inf [C : complete_lattice_Sup A] : complete_lattice_Inf A := ⦃ complete_lattice_Inf, C ⦄ -- Every complete_lattice_Sup is a complete_lattice section definition complete_lattice_Sup_to_complete_lattice [trans_instance] [C : complete_lattice_Sup A] : complete_lattice A := ⦃ complete_lattice, C ⦄ end section complete_lattice variable [C : complete_lattice A] include C variable {f : A → A} premise (mono : ∀ x y : A, x ≤ y → f x ≤ f y) theorem knaster_tarski : ∃ a, f a = a ∧ ∀ b, f b = b → a ≤ b := let a := ⨅ {u | f u ≤ u} in have h₁ : f a = a, from have ge : f a ≤ a, from have ∀ b, b ∈ {u | f u ≤ u} → f a ≤ b, from take b, suppose f b ≤ b, have a ≤ b, from Inf_le this, have f a ≤ f b, from !mono this, le.trans `f a ≤ f b` `f b ≤ b`, le_Inf this, have le : a ≤ f a, from have f (f a) ≤ f a, from !mono ge, have f a ∈ {u | f u ≤ u}, from this, Inf_le this, le.antisymm ge le, have h₂ : ∀ b, f b = b → a ≤ b, from take b, suppose f b = b, have b ∈ {u | f u ≤ u}, from show f b ≤ b, by rewrite this; apply le.refl, Inf_le this, exists.intro a (and.intro h₁ h₂) theorem knaster_tarski_dual : ∃ a, f a = a ∧ ∀ b, f b = b → b ≤ a := let a := ⨆ {u | u ≤ f u} in have h₁ : f a = a, from have le : a ≤ f a, from have ∀ b, b ∈ {u | u ≤ f u} → b ≤ f a, from take b, suppose b ≤ f b, have b ≤ a, from le_Sup this, have f b ≤ f a, from !mono this, le.trans `b ≤ f b` `f b ≤ f a`, Sup_le this, have ge : f a ≤ a, from have f a ≤ f (f a), from !mono le, have f a ∈ {u | u ≤ f u}, from this, le_Sup this, le.antisymm ge le, have h₂ : ∀ b, f b = b → b ≤ a, from take b, suppose f b = b, have b ≤ f b, by rewrite this; apply le.refl, le_Sup this, exists.intro a (and.intro h₁ h₂) /- top and bot -/ definition bot : A := ⨅ univ definition top : A := ⨆ univ notation `⊥` := bot notation `⊤` := top lemma bot_le (a : A) : ⊥ ≤ a := Inf_le !mem_univ lemma eq_bot {a : A} : (∀ b, a ≤ b) → a = ⊥ := assume h, have a ≤ ⊥, from le_Inf (take b bin, h b), le.antisymm this !bot_le lemma le_top (a : A) : a ≤ ⊤ := le_Sup !mem_univ lemma eq_top {a : A} : (∀ b, b ≤ a) → a = ⊤ := assume h, have ⊤ ≤ a, from Sup_le (take b bin, h b), le.antisymm !le_top this /- general facts about complete lattices -/ lemma Inf_singleton {a : A} : ⨅'{a} = a := have ⨅'{a} ≤ a, from Inf_le !mem_insert, have a ≤ ⨅'{a}, from le_Inf (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl), le.antisymm `⨅'{a} ≤ a` `a ≤ ⨅'{a}` lemma Sup_singleton {a : A} : ⨆'{a} = a := have ⨆'{a} ≤ a, from Sup_le (take b, suppose b ∈ '{a}, assert b = a, from eq_of_mem_singleton this, by rewrite this; apply le.refl), have a ≤ ⨆'{a}, from le_Sup !mem_insert, le.antisymm `⨆'{a} ≤ a` `a ≤ ⨆'{a}` lemma Inf_antimono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨅ s₂ ≤ ⨅ s₁ := suppose s₁ ⊆ s₂, le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`)) lemma Sup_mono {s₁ s₂ : set A} : s₁ ⊆ s₂ → ⨆ s₁ ≤ ⨆ s₂ := suppose s₁ ⊆ s₂, Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_of_subset_of_mem `s₁ ⊆ s₂` `a ∈ s₁`)) lemma Inf_union (s₁ s₂ : set A) : ⨅ (s₁ ∪ s₂) = (⨅s₁) ⊓ (⨅s₂) := have le₁ : ⨅ (s₁ ∪ s₂) ≤ (⨅s₁) ⊓ (⨅s₂), from !le_inf (le_Inf (take a : A, suppose a ∈ s₁, Inf_le (mem_unionl `a ∈ s₁`))) (le_Inf (take a : A, suppose a ∈ s₂, Inf_le (mem_unionr `a ∈ s₂`))), have le₂ : (⨅s₁) ⊓ (⨅s₂) ≤ ⨅ (s₁ ∪ s₂), from le_Inf (take a : A, suppose a ∈ s₁ ∪ s₂, or.elim this (suppose a ∈ s₁, have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁, from !inf_le_left, have ⨅s₁ ≤ a, from Inf_le `a ∈ s₁`, le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₁` `⨅s₁ ≤ a`) (suppose a ∈ s₂, have (⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂, from !inf_le_right, have ⨅s₂ ≤ a, from Inf_le `a ∈ s₂`, le.trans `(⨅s₁) ⊓ (⨅s₂) ≤ ⨅s₂` `⨅s₂ ≤ a`)), le.antisymm le₁ le₂ lemma Sup_union (s₁ s₂ : set A) : ⨆ (s₁ ∪ s₂) = (⨆s₁) ⊔ (⨆s₂) := have le₁ : ⨆ (s₁ ∪ s₂) ≤ (⨆s₁) ⊔ (⨆s₂), from Sup_le (take a : A, suppose a ∈ s₁ ∪ s₂, or.elim this (suppose a ∈ s₁, have a ≤ ⨆s₁, from le_Sup `a ∈ s₁`, have ⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_left, le.trans `a ≤ ⨆s₁` `⨆s₁ ≤ (⨆s₁) ⊔ (⨆s₂)`) (suppose a ∈ s₂, have a ≤ ⨆s₂, from le_Sup `a ∈ s₂`, have ⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂), from !le_sup_right, le.trans `a ≤ ⨆s₂` `⨆s₂ ≤ (⨆s₁) ⊔ (⨆s₂)`)), have le₂ : (⨆s₁) ⊔ (⨆s₂) ≤ ⨆ (s₁ ∪ s₂), from !sup_le (Sup_le (take a : A, suppose a ∈ s₁, le_Sup (mem_unionl `a ∈ s₁`))) (Sup_le (take a : A, suppose a ∈ s₂, le_Sup (mem_unionr `a ∈ s₂`))), le.antisymm le₁ le₂ lemma Inf_empty_eq_Sup_univ : ⨅ (∅ : set A) = ⨆ univ := have le₁ : ⨅ (∅ : set A) ≤ ⨆ univ, from le_Sup !mem_univ, have le₂ : ⨆ univ ≤ ⨅ ∅, from le_Inf (take a : A, suppose a ∈ ∅, absurd this !not_mem_empty), le.antisymm le₁ le₂ lemma Sup_empty_eq_Inf_univ : ⨆ (∅ : set A) = ⨅ univ := have le₁ : ⨆ (∅ : set A) ≤ ⨅ univ, from Sup_le (take a, suppose a ∈ ∅, absurd this !not_mem_empty), have le₂ : ⨅ univ ≤ ⨆ (∅ : set A), from Inf_le !mem_univ, le.antisymm le₁ le₂ lemma Sup_pair (a b : A) : Sup '{a, b} = sup a b := by rewrite [insert_eq, Sup_union, *Sup_singleton] lemma Inf_pair (a b : A) : Inf '{a, b} = inf a b := by rewrite [insert_eq, Inf_union, *Inf_singleton] end complete_lattice /- complete lattice instances -/ section open eq.ops complete_lattice definition complete_lattice_fun [instance] (A B : Type) [complete_lattice B] : complete_lattice (A → B) := ⦃ complete_lattice, lattice_fun A B, Inf := λS x, Inf ((λf, f x) ' S), le_Inf := take f S H x, le_Inf (take y Hy, obtain g `g ∈ S` `g x = y`, from Hy, `g x = y` ▸ H g `g ∈ S` x), Inf_le := take f S `f ∈ S` x, Inf_le (exists.intro f (and.intro `f ∈ S` rfl)), Sup := λS x, Sup ((λf, f x) ' S), le_Sup := take f S `f ∈ S` x, le_Sup (exists.intro f (and.intro `f ∈ S` rfl)), Sup_le := take f S H x, Sup_le (take y Hy, obtain g `g ∈ S` `g x = y`, from Hy, `g x = y` ▸ H g `g ∈ S` x) ⦄ section open classical -- Prop and set are only in the classical setting a complete lattice definition complete_lattice_Prop [instance] : complete_lattice Prop := ⦃ complete_lattice, lattice_Prop, Inf := λS, false ∉ S, le_Inf := take x S H Hx Hf, H _ Hf Hx, Inf_le := take x S Hx Hf, (classical.cases_on x (take x, true.intro) Hf) Hx, Sup := λS, true ∈ S, le_Sup := take x S Hx H, iff_subst (iff.intro (take H, true.intro) (take H', H)) Hx, Sup_le := take x S H Ht, H _ Ht true.intro ⦄ lemma sInter_eq_Inf_fun {A : Type} (S : set (set A)) : ⋂₀ S = @Inf (A → Prop) _ S := funext (take x, calc (⋂₀ S) x = ∀₀ P ∈ S, P x : rfl ... = ¬ (∃₀ P ∈ S, P x = false) : begin rewrite not_bounded_exists, apply bounded_forall_congr, intros, rewrite eq_false, rewrite not_not_iff end ... = @Inf (A → Prop) _ S x : rfl) lemma sUnion_eq_Sup_fun {A : Type} (S : set (set A)) : ⋃₀ S = @Sup (A → Prop) _ S := funext (take x, calc (⋃₀ S) x = ∃₀ P ∈ S, P x : rfl ... = (∃₀ P ∈ S, P x = true) : begin apply bounded_exists_congr, intros, rewrite eq_true end ... = @Sup (A → Prop) _ S x : rfl) definition complete_lattice_set [instance] (A : Type) : complete_lattice (set A) := ⦃ complete_lattice, le := subset, le_refl := @le_refl (A → Prop) _, le_trans := @le_trans (A → Prop) _, le_antisymm := @le_antisymm (A → Prop) _, inf := inter, sup := union, inf_le_left := @inf_le_left (A → Prop) _, inf_le_right := @inf_le_right (A → Prop) _, le_inf := @le_inf (A → Prop) _, le_sup_left := @le_sup_left (A → Prop) _, le_sup_right := @le_sup_right (A → Prop) _, sup_le := @sup_le (A → Prop) _, Inf := sInter, Sup := sUnion, le_Inf := begin intros X S H, rewrite sInter_eq_Inf_fun, apply (@le_Inf (A → Prop) _), exact H end, Inf_le := begin intros X S H, rewrite sInter_eq_Inf_fun, apply (@Inf_le (A → Prop) _), exact H end, le_Sup := begin intros X S H, rewrite sUnion_eq_Sup_fun, apply (@le_Sup (A → Prop) _), exact H end, Sup_le := begin intros X S H, rewrite sUnion_eq_Sup_fun, apply (@Sup_le (A → Prop) _), exact H end ⦄ end end