Import kernel. Variable Nat : Type. Alias ℕ : Nat. Namespace Nat. Builtin numeral. Builtin add : Nat → Nat → Nat. Infixl 65 + : add. Builtin mul : Nat → Nat → Nat. Infixl 70 * : mul. Builtin le : Nat → Nat → Bool. Infix 50 <= : le. Infix 50 ≤ : le. Definition ge (a b : Nat) := b ≤ a. Infix 50 >= : ge. Infix 50 ≥ : ge. Definition lt (a b : Nat) := ¬ (a ≥ b). Infix 50 < : lt. Definition gt (a b : Nat) := ¬ (a ≤ b). Infix 50 > : gt. Definition id (a : Nat) := a. Notation 55 | _ | : id. Axiom SuccInj {a b : Nat} (H : a + 1 = b + 1) : a = b Axiom PlusZero (a : Nat) : a + 0 = a. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom MulZero (a : Nat) : a * 0 = 0. Axiom MulSucc (a b : Nat) : a * (b + 1) = a * b + a. Axiom Induction {P : Nat → Bool} (Hb : P 0) (Hi : Π (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Theorem ZeroNeOne : 0 ≠ 1 := Trivial. Theorem ZeroPlus (a : Nat) : 0 + a = a := Induction (show 0 + 0 = 0, Trivial) (λ (n : Nat) (Hi : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : PlusSucc 0 n ... = n + 1 : { Hi }) a. Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1 := Induction (calc (a + 1) + 0 = a + 1 : PlusZero (a + 1) ... = (a + 0) + 1 : { Symm (PlusZero a) }) (λ (n : Nat) (Hi : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : PlusSucc (a + 1) n ... = ((a + n) + 1) + 1 : { Hi } ... = (a + (n + 1)) + 1 : { show (a + n) + 1 = a + (n + 1), Symm (PlusSucc a n) }) b. Theorem PlusComm (a b : Nat) : a + b = b + a := Induction (calc a + 0 = a : PlusZero a ... = 0 + a : Symm (ZeroPlus a)) (λ (n : Nat) (Hi : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : PlusSucc a n ... = (n + a) + 1 : { Hi } ... = (n + 1) + a : Symm (SuccPlus n a)) b. Theorem PlusAssoc (a b c : Nat) : a + (b + c) = (a + b) + c := Induction (calc 0 + (b + c) = b + c : ZeroPlus (b + c) ... = (0 + b) + c : { Symm (ZeroPlus b) }) (λ (n : Nat) (Hi : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : SuccPlus n (b + c) ... = ((n + b) + c) + 1 : { Hi } ... = ((n + b) + 1) + c : Symm (SuccPlus (n + b) c) ... = ((n + 1) + b) + c : { show (n + b) + 1 = (n + 1) + b, Symm (SuccPlus n b) }) a. Theorem ZeroMul (a : Nat) : 0 * a = 0 := Induction (show 0 * 0 = 0, Trivial) (λ (n : Nat) (Hi : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : MulSucc 0 n ... = 0 + 0 : { Hi } ... = 0 : Trivial) a. Theorem SuccMul (a b : Nat) : (a + 1) * b = a * b + b := Induction (calc (a + 1) * 0 = 0 : MulZero (a + 1) ... = a * 0 : Symm (MulZero a) ... = a * 0 + 0 : Symm (PlusZero (a * 0))) (λ (n : Nat) (Hi : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : MulSucc (a + 1) n ... = a * n + n + (a + 1) : { Hi } ... = a * n + n + a + 1 : PlusAssoc (a * n + n) a 1 ... = a * n + (n + a) + 1 : { show a * n + n + a = a * n + (n + a), Symm (PlusAssoc (a * n) n a) } ... = a * n + (a + n) + 1 : { PlusComm n a } ... = a * n + a + n + 1 : { PlusAssoc (a * n) a n } ... = a * (n + 1) + n + 1 : { Symm (MulSucc a n) } ... = a * (n + 1) + (n + 1) : Symm (PlusAssoc (a * (n + 1)) n 1)) b. Theorem OneMul (a : Nat) : 1 * a = a := Induction (show 1 * 0 = 0, Trivial) (λ (n : Nat) (Hi : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : MulSucc 1 n ... = n + 1 : { Hi }) a. Theorem MulOne (a : Nat) : a * 1 = a := Induction (show 0 * 1 = 0, Trivial) (λ (n : Nat) (Hi : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : SuccMul n 1 ... = n + 1 : { Hi }) a. Theorem MulComm (a b : Nat) : a * b = b * a := Induction (calc a * 0 = 0 : MulZero a ... = 0 * a : Symm (ZeroMul a)) (λ (n : Nat) (Hi : a * n = n * a), calc a * (n + 1) = a * n + a : MulSucc a n ... = n * a + a : { Hi } ... = (n + 1) * a : Symm (SuccMul n a)) b. Theorem Distribute (a b c : Nat) : a * (b + c) = a * b + a * c := Induction (calc 0 * (b + c) = 0 : ZeroMul (b + c) ... = 0 + 0 : Trivial ... = 0 * b + 0 : { Symm (ZeroMul b) } ... = 0 * b + 0 * c : { Symm (ZeroMul c) }) (λ (n : Nat) (Hi : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : SuccMul n (b + c) ... = n * b + n * c + (b + c) : { Hi } ... = n * b + n * c + b + c : PlusAssoc (n * b + n * c) b c ... = n * b + (n * c + b) + c : { Symm (PlusAssoc (n * b) (n * c) b) } ... = n * b + (b + n * c) + c : { PlusComm (n * c) b } ... = n * b + b + n * c + c : { PlusAssoc (n * b) b (n * c) } ... = (n + 1) * b + n * c + c : { Symm (SuccMul n b) } ... = (n + 1) * b + (n * c + c) : Symm (PlusAssoc ((n + 1) * b) (n * c) c) ... = (n + 1) * b + (n + 1) * c : { Symm (SuccMul n c) }) a. Theorem Distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : MulComm (a + b) c ... = c * a + c * b : Distribute c a b ... = a * c + c * b : { MulComm c a } ... = a * c + b * c : { MulComm c b }. Theorem MulAssoc (a b c : Nat) : a * (b * c) = a * b * c := Induction (calc 0 * (b * c) = 0 : ZeroMul (b * c) ... = 0 * c : Symm (ZeroMul c) ... = (0 * b) * c : { Symm (ZeroMul b) }) (λ (n : Nat) (Hi : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : SuccMul n (b * c) ... = n * b * c + (b * c) : { Hi } ... = (n * b + b) * c : Symm (Distribute2 (n * b) b c) ... = (n + 1) * b * c : { Symm (SuccMul n b) }) a. SetOpaque ge true. SetOpaque lt true. SetOpaque gt true. SetOpaque id true. EndNamespace.