/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Basic facts about the positive natural numbers. Developed primarily for use in the construction of ℝ. For the most part, the only theorems here are those needed for that construction. -/ import data.rat.order data.nat open nat rat subtype eq.ops namespace pnat definition pnat := { n : ℕ | n > 0 } notation `ℕ+` := pnat theorem pos (n : ℕ) (H : n > 0) : ℕ+ := tag n H definition nat_of_pnat (p : ℕ+) : ℕ := elt_of p reserve postfix `~`:std.prec.max_plus local postfix ~ := nat_of_pnat theorem pnat_pos (p : ℕ+) : p~ > 0 := has_property p definition add (p q : ℕ+) : ℕ+ := tag (p~ + q~) (nat.add_pos (pnat_pos p) (pnat_pos q)) infix `+` := add definition mul (p q : ℕ+) : ℕ+ := tag (p~ * q~) (nat.mul_pos (pnat_pos p) (pnat_pos q)) infix `*` := mul definition le (p q : ℕ+) := p~ ≤ q~ infix `≤` := le notation p `≥` q := q ≤ p definition lt (p q : ℕ+) := p~ < q~ infix `<` := lt protected theorem pnat.eq {p q : ℕ+} : p~ = q~ → p = q := subtype.eq definition pnat_le_decidable [instance] (p q : ℕ+) : decidable (p ≤ q) := nat.decidable_le p~ q~ definition pnat_lt_decidable [instance] {p q : ℕ+} : decidable (p < q) := nat.decidable_lt p~ q~ theorem le.trans {p q r : ℕ+} (H1 : p ≤ q) (H2 : q ≤ r) : p ≤ r := nat.le.trans H1 H2 definition max (p q : ℕ+) := tag (nat.max p~ q~) (nat.lt_of_lt_of_le (!pnat_pos) (!le_max_right)) theorem max_right (a b : ℕ+) : max a b ≥ b := !le_max_right theorem max_left (a b : ℕ+) : max a b ≥ a := !le_max_left theorem max_eq_right {a b : ℕ+} (H : a < b) : max a b = b := pnat.eq (nat.max_eq_right' H) theorem max_eq_left {a b : ℕ+} (H : ¬ a < b) : max a b = a := pnat.eq (nat.max_eq_left' H) theorem le_of_lt {a b : ℕ+} : a < b → a ≤ b := nat.le_of_lt theorem not_lt_of_ge {a b : ℕ+} : a ≤ b → ¬ (b < a) := nat.not_lt_of_ge theorem le_of_not_gt {a b : ℕ+} : ¬ a < b → b ≤ a := nat.le_of_not_gt theorem eq_of_le_of_ge {a b : ℕ+} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := pnat.eq (nat.eq_of_le_of_ge H1 H2) theorem le.refl (a : ℕ+) : a ≤ a := !nat.le.refl notation 2 := (tag 2 dec_trivial : ℕ+) notation 3 := (tag 3 dec_trivial : ℕ+) definition pone : ℕ+ := tag 1 dec_trivial definition rat_of_pnat [reducible] (n : ℕ+) : ℚ := n~ theorem pnat.to_rat_of_nat (n : ℕ+) : rat_of_pnat n = of_nat n~ := rfl -- these will come in rat theorem rat_of_nat_nonneg (n : ℕ) : 0 ≤ of_nat n := trivial theorem rat_of_pnat_ge_one (n : ℕ+) : rat_of_pnat n ≥ 1 := (iff.mpr !of_nat_le_of_nat) (pnat_pos n) theorem rat_of_pnat_is_pos (n : ℕ+) : rat_of_pnat n > 0 := (iff.mpr !of_nat_pos) (pnat_pos n) theorem of_nat_le_of_nat_of_le {m n : ℕ} (H : m ≤ n) : of_nat m ≤ of_nat n := (iff.mpr !of_nat_le_of_nat) H theorem of_nat_lt_of_nat_of_lt {m n : ℕ} (H : m < n) : of_nat m < of_nat n := (iff.mpr !of_nat_lt_of_nat) H theorem rat_of_pnat_le_of_pnat_le {m n : ℕ+} (H : m ≤ n) : rat_of_pnat m ≤ rat_of_pnat n := of_nat_le_of_nat_of_le H theorem rat_of_pnat_lt_of_pnat_lt {m n : ℕ+} (H : m < n) : rat_of_pnat m < rat_of_pnat n := of_nat_lt_of_nat_of_lt H theorem pnat_le_of_rat_of_pnat_le {m n : ℕ+} (H : rat_of_pnat m ≤ rat_of_pnat n) : m ≤ n := (iff.mp !of_nat_le_of_nat) H definition inv (n : ℕ+) : ℚ := (1 : ℚ) / rat_of_pnat n postfix `⁻¹` := inv theorem inv_pos (n : ℕ+) : n⁻¹ > 0 := div_pos_of_pos !rat_of_pnat_is_pos theorem inv_le_one (n : ℕ+) : n⁻¹ ≤ (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_le_div_of_le, apply rat.zero_lt_one, apply rat_of_pnat_ge_one end theorem inv_lt_one_of_gt {n : ℕ+} (H : n~ > 1) : n⁻¹ < (1 : ℚ) := begin rewrite [↑inv, -one_div_one], apply div_lt_div_of_lt, apply rat.zero_lt_one, rewrite pnat.to_rat_of_nat, apply (of_nat_lt_of_nat_of_lt H) end theorem pone_inv : pone⁻¹ = 1 := rfl theorem add_invs_nonneg (m n : ℕ+) : 0 ≤ m⁻¹ + n⁻¹ := begin apply rat.le_of_lt, apply rat.add_pos, repeat apply inv_pos end theorem one_mul (n : ℕ+) : pone * n = n := begin apply pnat.eq, rewrite [↑pone, ↑mul, ↑nat_of_pnat, one_mul] end theorem pone_le (n : ℕ+) : pone ≤ n := succ_le_of_lt (pnat_pos n) theorem pnat_to_rat_mul (a b : ℕ+) : rat_of_pnat (a * b) = rat_of_pnat a * rat_of_pnat b := rfl theorem mul_lt_mul_left (a b c : ℕ+) (H : a < b) : a * c < b * c := nat.mul_lt_mul_of_pos_right H !pnat_pos theorem one_lt_two : pone < 2 := !nat.le.refl theorem inv_two_mul_lt_inv (n : ℕ+) : (2 * n)⁻¹ < n⁻¹ := begin rewrite ↑inv, apply div_lt_div_of_lt, apply rat_of_pnat_is_pos, have H : n~ < (2 * n)~, begin rewrite -one_mul at {1}, apply mul_lt_mul_left, apply one_lt_two end, apply of_nat_lt_of_nat_of_lt, apply H end theorem inv_two_mul_le_inv (n : ℕ+) : (2 * n)⁻¹ ≤ n⁻¹ := rat.le_of_lt !inv_two_mul_lt_inv theorem inv_ge_of_le {p q : ℕ+} (H : p ≤ q) : q⁻¹ ≤ p⁻¹ := div_le_div_of_le !rat_of_pnat_is_pos (rat_of_pnat_le_of_pnat_le H) theorem inv_gt_of_lt {p q : ℕ+} (H : p < q) : q⁻¹ < p⁻¹ := div_lt_div_of_lt !rat_of_pnat_is_pos (rat_of_pnat_lt_of_pnat_lt H) theorem ge_of_inv_le {p q : ℕ+} (H : p⁻¹ ≤ q⁻¹) : q ≤ p := pnat_le_of_rat_of_pnat_le (le_of_div_le !rat_of_pnat_is_pos H) theorem two_mul (p : ℕ+) : rat_of_pnat (2 * p) = (1 + 1) * rat_of_pnat p := by rewrite pnat_to_rat_mul theorem add_halves (p : ℕ+) : (2 * p)⁻¹ + (2 * p)⁻¹ = p⁻¹ := begin rewrite [↑inv, -(@add_halves (1 / (rat_of_pnat p))), *div_div_eq_div_mul'], have H : rat_of_pnat (2 * p) = rat_of_pnat p * (1 + 1), by rewrite [rat.mul.comm, two_mul], rewrite *H end theorem add_halves_double (m n : ℕ+) : m⁻¹ + n⁻¹ = ((2 * m)⁻¹ + (2 * n)⁻¹) + ((2 * m)⁻¹ + (2 * n)⁻¹) := have hsimp [visible] : ∀ a b : ℚ, (a + a) + (b + b) = (a + b) + (a + b), by intros; rewrite [rat.add.assoc, -(rat.add.assoc a b b), {_+b}rat.add.comm, -*rat.add.assoc], by rewrite [-add_halves m, -add_halves n, hsimp] theorem inv_mul_eq_mul_inv {p q : ℕ+} : (p * q)⁻¹ = p⁻¹ * q⁻¹ := by rewrite [↑inv, pnat_to_rat_mul, one_div_mul_one_div'''] theorem inv_mul_le_inv (p q : ℕ+) : (p * q)⁻¹ ≤ q⁻¹ := begin rewrite [inv_mul_eq_mul_inv, -{q⁻¹}rat.one_mul at {2}], apply rat.mul_le_mul, apply inv_le_one, apply rat.le.refl, apply rat.le_of_lt, apply inv_pos, apply rat.le_of_lt rat.zero_lt_one end theorem pnat_mul_le_mul_left' (a b c : ℕ+) (H : a ≤ b) : c * a ≤ c * b := nat.mul_le_mul_of_nonneg_left H (nat.le_of_lt !pnat_pos) theorem mul.assoc (a b c : ℕ+) : a * b * c = a * (b * c) := pnat.eq !nat.mul.assoc theorem mul.comm (a b : ℕ+) : a * b = b * a := pnat.eq !nat.mul.comm theorem add.assoc (a b c : ℕ+) : a + b + c = a + (b + c) := pnat.eq !nat.add.assoc theorem mul_le_mul_left (p q : ℕ+) : q ≤ p * q := begin rewrite [-one_mul at {1}, mul.comm, mul.comm p], apply pnat_mul_le_mul_left', apply pone_le end theorem mul_le_mul_right (p q : ℕ+) : p ≤ p * q := by rewrite mul.comm; apply mul_le_mul_left theorem pnat.lt_of_not_le {p q : ℕ+} (H : ¬ p ≤ q) : q < p := nat.lt_of_not_ge H theorem inv_cancel_left (p : ℕ+) : rat_of_pnat p * p⁻¹ = (1 : ℚ) := mul_one_div_cancel (ne.symm (rat.ne_of_lt !rat_of_pnat_is_pos)) theorem inv_cancel_right (p : ℕ+) : p⁻¹ * rat_of_pnat p = (1 : ℚ) := by rewrite rat.mul.comm; apply inv_cancel_left theorem lt_add_left (p q : ℕ+) : p < p + q := begin have H : p~ < p~ + q~, begin rewrite -nat.add_zero at {1}, apply nat.add_lt_add_left, apply pnat_pos end, apply H end theorem inv_add_lt_left (p q : ℕ+) : (p + q)⁻¹ < p⁻¹ := by apply inv_gt_of_lt; apply lt_add_left theorem div_le_pnat (q : ℚ) (n : ℕ+) (H : q ≥ n⁻¹) : 1 / q ≤ rat_of_pnat n := begin apply rat.div_le_of_le_mul, apply rat.lt_of_lt_of_le, apply inv_pos, rotate 1, apply H, apply rat.le_mul_of_div_le, apply rat_of_pnat_is_pos, apply H end theorem pnat_cancel' (n m : ℕ+) : (n * n * m)⁻¹ * (rat_of_pnat n * rat_of_pnat n) = m⁻¹ := assert hsimp : ∀ a b c : ℚ, (a * a * (b * b * c)) = (a * b) * (a * b) * c, from λa b c, by rewrite[-*rat.mul.assoc]; exact (!rat.mul.right_comm ▸ rfl), by rewrite [rat.mul.comm, *inv_mul_eq_mul_inv, hsimp, *inv_cancel_left, *rat.one_mul] definition pceil (a : ℚ) : ℕ+ := tag (ubound a) !ubound_pos theorem pceil_helper {a : ℚ} {n : ℕ+} (H : pceil a ≤ n) (Ha : a > 0) : n⁻¹ ≤ 1 / a := rat.le.trans (inv_ge_of_le H) (div_le_div_of_le Ha (ubound_ge a)) theorem inv_pceil_div (a b : ℚ) (Ha : a > 0) (Hb : b > 0) : (pceil (a / b))⁻¹ ≤ b / a := div_div' ▸ div_le_div_of_le (div_pos_of_pos (pos_div_of_pos_of_pos Hb Ha)) ((div_div_eq_mul_div (ne_of_gt Hb) (ne_of_gt Ha))⁻¹ ▸ !rat.one_mul⁻¹ ▸ !ubound_ge) end pnat