/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn -/ prelude import init.datatypes init.reserved_notation /- implication -/ definition implies (a b : Prop) := a → b lemma implies.trans [trans] {p q r : Prop} (h₁ : implies p q) (h₂ : implies q r) : implies p r := assume hp, h₂ (h₁ hp) definition trivial := true.intro definition not (a : Prop) := a → false prefix `¬` := not definition absurd {a : Prop} {b : Type} (H1 : a) (H2 : ¬a) : b := false.rec b (H2 H1) /- not -/ theorem not_false : ¬false := assume H : false, H definition non_contradictory (a : Prop) : Prop := ¬¬a theorem non_contradictory_intro {a : Prop} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna /- eq -/ notation a = b := eq a b definition rfl {A : Type} {a : A} : a = a := eq.refl a -- proof irrelevance is built in theorem proof_irrel {a : Prop} (H₁ H₂ : a) : H₁ = H₂ := rfl -- Remark: we provide the universe levels explicitly to make sure `eq.drec` has the same type of `eq.rec` in the HoTT library protected theorem eq.drec.{l₁ l₂} {A : Type.{l₂}} {a : A} {C : Π (x : A), a = x → Type.{l₁}} (h₁ : C a (eq.refl a)) {b : A} (h₂ : a = b) : C b h₂ := eq.rec (λh₂ : a = a, show C a h₂, from h₁) h₂ h₂ namespace eq variables {A : Type} variables {a b c a': A} protected theorem drec_on {a : A} {C : Π (x : A), a = x → Type} {b : A} (h₂ : a = b) (h₁ : C a (refl a)) : C b h₂ := eq.drec h₁ h₂ theorem subst {P : A → Prop} (H₁ : a = b) (H₂ : P a) : P b := eq.rec H₂ H₁ theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ theorem symm : a = b → b = a := eq.rec (refl a) theorem substr {P : A → Prop} (H₁ : b = a) : P a → P b := subst (symm H₁) namespace ops notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 notation H1 ▹ H2 := eq.rec H2 H1 end ops end eq theorem congr {A B : Type} {f₁ f₂ : A → B} {a₁ a₂ : A} (H₁ : f₁ = f₂) (H₂ : a₁ = a₂) : f₁ a₁ = f₂ a₂ := eq.subst H₁ (eq.subst H₂ rfl) theorem congr_fun {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := eq.subst H (eq.refl (f a)) theorem congr_arg {A B : Type} {a₁ a₂ : A} (f : A → B) : a₁ = a₂ → f a₁ = f a₂ := congr rfl section variables {A : Type} {a b c: A} open eq.ops theorem trans_rel_left (R : A → A → Prop) (H₁ : R a b) (H₂ : b = c) : R a c := H₂ ▸ H₁ theorem trans_rel_right (R : A → A → Prop) (H₁ : a = b) (H₂ : R b c) : R a c := H₁⁻¹ ▸ H₂ end section variable {p : Prop} open eq.ops theorem of_eq_true (H : p = true) : p := H⁻¹ ▸ trivial theorem not_of_eq_false (H : p = false) : ¬p := assume Hp, H ▸ Hp end attribute eq.subst [subst] attribute eq.refl [refl] attribute eq.trans [trans] attribute eq.symm [symm] /- ne -/ definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} theorem intro (H : a = b → false) : a ≠ b := H theorem elim (H : a ≠ b) : a = b → false := H theorem irrefl (H : a ≠ a) : false := H rfl theorem symm (H : a ≠ b) : b ≠ a := assume (H₁ : b = a), H (H₁⁻¹) end ne theorem false.of_ne {A : Type} {a : A} : a ≠ a → false := ne.irrefl infixl `==`:50 := heq namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} theorem to_eq (H : a == a') : a = a' := have H₁ : ∀ (Ht : A = A), eq.rec a Ht = a, from λ Ht, eq.refl a, heq.rec H₁ H (eq.refl A) theorem elim {A : Type} {a : A} {P : A → Type} {b : A} (H₁ : a == b) : P a → P b := eq.rec_on (to_eq H₁) theorem subst {P : ∀T : Type, T → Prop} : a == b → P A a → P B b := heq.rec_on theorem symm (H : a == b) : b == a := heq.rec_on H (refl a) theorem of_eq (H : a = a') : a == a' := eq.subst H (refl a) theorem trans (H₁ : a == b) (H₂ : b == c) : a == c := subst H₂ H₁ theorem of_heq_of_eq (H₁ : a == b) (H₂ : b = b') : a == b' := trans H₁ (of_eq H₂) theorem of_eq_of_heq (H₁ : a = a') (H₂ : a' == b) : a == b := trans (of_eq H₁) H₂ definition type_eq (H : a == b) : A = B := heq.rec_on H (eq.refl A) end heq open eq.ops theorem eq_rec_heq {A : Type} {P : A → Type} {a a' : A} (H : a = a') (p : P a) : H ▹ p == p := eq.drec_on H !heq.refl theorem eq_rec_of_heq_left : ∀ {A₁ A₂ : Type} {a₁ : A₁} {a₂ : A₂} (h : a₁ == a₂), heq.type_eq h ▹ a₁ = a₂ | A A a a (heq.refl a) := rfl reveal eq.symm theorem eq_rec_of_heq_right : ∀ {A₁ A₂ : Type} {a₁ : A₁} {a₂ : A₂} (h : a₁ == a₂), a₁ = (heq.type_eq h)⁻¹ ▹ a₂ | A A a a (heq.refl a) := rfl theorem heq_of_eq_rec_left {A : Type} {P : A → Type} : ∀ {a a' : A} {p₁ : P a} {p₂ : P a'} (e : a = a') (h₂ : e ▹ p₁ = p₂), p₁ == p₂ | a a p₁ p₂ (eq.refl a) h := eq.rec_on h !heq.refl theorem heq_of_eq_rec_right {A : Type} {P : A → Type} : ∀ {a a' : A} {p₁ : P a} {p₂ : P a'} (e : a' = a) (h₂ : p₁ = e ▹ p₂), p₁ == p₂ | a a p₁ p₂ (eq.refl a) h := eq.rec_on h !heq.refl theorem of_heq_true {a : Prop} (H : a == true) : a := of_eq_true (heq.to_eq H) theorem eq_rec_compose : ∀ {A B C : Type} (p₁ : B = C) (p₂ : A = B) (a : A), p₁ ▹ (p₂ ▹ a : B) = (p₂ ⬝ p₁) ▹ a | A A A (eq.refl A) (eq.refl A) a := calc eq.refl A ▹ eq.refl A ▹ a = eq.refl A ▹ a : rfl ... = (eq.refl A ⬝ eq.refl A) ▹ a : {proof_irrel (eq.refl A) (eq.refl A ⬝ eq.refl A)} attribute heq.refl [refl] attribute heq.trans [trans] attribute heq.of_heq_of_eq [trans] attribute heq.of_eq_of_heq [trans] attribute heq.symm [symm] /- and -/ notation a /\ b := and a b notation a ∧ b := and a b variables {a b c d : Prop} theorem and.elim (H₁ : a ∧ b) (H₂ : a → b → c) : c := and.rec H₂ H₁ /- or -/ notation a `\/` b := or a b notation a ∨ b := or a b namespace or theorem elim (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → c) : c := or.rec H₂ H₃ H₁ end or theorem non_contradictory_em (a : Prop) : ¬¬(a ∨ ¬a) := assume not_em : ¬(a ∨ ¬a), have neg_a : ¬a, from assume pos_a : a, absurd (or.inl pos_a) not_em, absurd (or.inr neg_a) not_em /- iff -/ definition iff (a b : Prop) := (a → b) ∧ (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b namespace iff theorem intro : (a → b) → (b → a) → (a ↔ b) := and.intro theorem elim : ((a → b) → (b → a) → c) → (a ↔ b) → c := and.rec theorem elim_left : (a ↔ b) → a → b := and.left definition mp := @elim_left theorem elim_right : (a ↔ b) → b → a := and.right definition mpr := @elim_right theorem refl (a : Prop) : a ↔ a := intro (assume H, H) (assume H, H) theorem rfl {a : Prop} : a ↔ a := refl a theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, mp H₂ (mp H₁ Ha)) (assume Hc, mpr H₁ (mpr H₂ Hc)) theorem symm (H : a ↔ b) : b ↔ a := intro (elim_right H) (elim_left H) theorem comm : (a ↔ b) ↔ (b ↔ a) := intro symm symm open eq.ops theorem of_eq {a b : Prop} (H : a = b) : a ↔ b := H ▸ rfl end iff theorem not_iff_not_of_iff (H₁ : a ↔ b) : ¬a ↔ ¬b := iff.intro (assume (Hna : ¬ a) (Hb : b), Hna (iff.elim_right H₁ Hb)) (assume (Hnb : ¬ b) (Ha : a), Hnb (iff.elim_left H₁ Ha)) theorem of_iff_true (H : a ↔ true) : a := iff.mp (iff.symm H) trivial theorem not_of_iff_false : (a ↔ false) → ¬a := iff.mp theorem iff_true_intro (H : a) : a ↔ true := iff.intro (λ Hl, trivial) (λ Hr, H) theorem iff_false_intro (H : ¬a) : a ↔ false := iff.intro H !false.rec theorem not_non_contradictory_iff_absurd (a : Prop) : ¬¬¬a ↔ ¬a := iff.intro (λ (Hl : ¬¬¬a) (Ha : a), Hl (non_contradictory_intro Ha)) absurd attribute iff.refl [refl] attribute iff.symm [symm] attribute iff.trans [trans] inductive Exists {A : Type} (P : A → Prop) : Prop := intro : ∀ (a : A), P a → Exists P definition exists.intro := @Exists.intro notation `exists` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists.elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A), p a → B) : B := Exists.rec H2 H1 /- decidable -/ inductive decidable [class] (p : Prop) : Type := | inl : p → decidable p | inr : ¬p → decidable p definition decidable_true [instance] : decidable true := decidable.inl trivial definition decidable_false [instance] : decidable false := decidable.inr not_false -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Prop) [H : decidable c] {A : Type} : (c → A) → (¬ c → A) → A := decidable.rec_on H /- if-then-else -/ definition ite (c : Prop) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) namespace decidable variables {p q : Prop} definition rec_on_true [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : p) (H4 : H1 H3) : decidable.rec_on H H1 H2 := decidable.rec_on H (λh, H4) (λh, !false.rec (h H3)) definition rec_on_false [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} (H3 : ¬p) (H4 : H2 H3) : decidable.rec_on H H1 H2 := decidable.rec_on H (λh, false.rec _ (H3 h)) (λh, H4) definition by_cases {q : Type} [C : decidable p] : (p → q) → (¬p → q) → q := !dite theorem em (p : Prop) [H : decidable p] : p ∨ ¬p := by_cases or.inl or.inr theorem by_contradiction [Hp : decidable p] (H : ¬p → false) : p := if H1 : p then H1 else false.rec _ (H H1) end decidable section variables {p q : Prop} open decidable definition decidable_of_decidable_of_iff (Hp : decidable p) (H : p ↔ q) : decidable q := if Hp : p then inl (iff.mp H Hp) else inr (iff.mp (not_iff_not_of_iff H) Hp) definition decidable_of_decidable_of_eq (Hp : decidable p) (H : p = q) : decidable q := decidable_of_decidable_of_iff Hp (iff.of_eq H) protected definition or.by_cases [Hp : decidable p] [Hq : decidable q] {A : Type} (h : p ∨ q) (h₁ : p → A) (h₂ : q → A) : A := if hp : p then h₁ hp else if hq : q then h₂ hq else false.rec _ (or.elim h hp hq) end section variables {p q : Prop} open decidable (rec_on inl inr) definition decidable_and [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) := if hp : p then if hq : q then inl (and.intro hp hq) else inr (assume H : p ∧ q, hq (and.right H)) else inr (assume H : p ∧ q, hp (and.left H)) definition decidable_or [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ∨ q) := if hp : p then inl (or.inl hp) else if hq : q then inl (or.inr hq) else inr (or.rec hp hq) definition decidable_not [instance] [Hp : decidable p] : decidable (¬p) := if hp : p then inr (absurd hp) else inl hp definition decidable_implies [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p → q) := if hp : p then if hq : q then inl (assume H, hq) else inr (assume H : p → q, absurd (H hp) hq) else inl (assume Hp, absurd Hp hp) definition decidable_iff [instance] [Hp : decidable p] [Hq : decidable q] : decidable (p ↔ q) := decidable_and end definition decidable_pred [reducible] {A : Type} (R : A → Prop) := Π (a : A), decidable (R a) definition decidable_rel [reducible] {A : Type} (R : A → A → Prop) := Π (a b : A), decidable (R a b) definition decidable_eq [reducible] (A : Type) := decidable_rel (@eq A) definition decidable_ne [instance] {A : Type} [H : decidable_eq A] (a b : A) : decidable (a ≠ b) := decidable_implies namespace bool theorem ff_ne_tt : ff = tt → false | [none] end bool open bool definition is_dec_eq {A : Type} (p : A → A → bool) : Prop := ∀ ⦃x y : A⦄, p x y = tt → x = y definition is_dec_refl {A : Type} (p : A → A → bool) : Prop := ∀x, p x x = tt open decidable protected definition bool.has_decidable_eq [instance] : ∀a b : bool, decidable (a = b) | ff ff := inl rfl | ff tt := inr ff_ne_tt | tt ff := inr (ne.symm ff_ne_tt) | tt tt := inl rfl definition decidable_eq_of_bool_pred {A : Type} {p : A → A → bool} (H₁ : is_dec_eq p) (H₂ : is_dec_refl p) : decidable_eq A := take x y : A, if Hp : p x y = tt then inl (H₁ Hp) else inr (assume Hxy : x = y, (eq.subst Hxy Hp) (H₂ y)) theorem decidable_eq_inl_refl {A : Type} [H : decidable_eq A] (a : A) : H a a = inl (eq.refl a) := match H a a with | inl e := rfl | inr n := absurd rfl n end open eq.ops theorem decidable_eq_inr_neg {A : Type} [H : decidable_eq A] {a b : A} : Π n : a ≠ b, H a b = inr n := assume n, match H a b with | inl e := absurd e n | inr n₁ := proof_irrel n n₁ ▸ rfl end /- inhabited -/ inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A protected definition inhabited.value {A : Type} : inhabited A → A := inhabited.rec (λa, a) protected definition inhabited.destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition default (A : Type) [H : inhabited A] : A := inhabited.value H definition arbitrary [irreducible] (A : Type) [H : inhabited A] : A := inhabited.value H definition Prop.is_inhabited [instance] : inhabited Prop := inhabited.mk true definition inhabited_fun [instance] (A : Type) {B : Type} [H : inhabited B] : inhabited (A → B) := inhabited.rec_on H (λb, inhabited.mk (λa, b)) definition inhabited_Pi [instance] (A : Type) {B : A → Type} [H : Πx, inhabited (B x)] : inhabited (Πx, B x) := inhabited.mk (λa, !default) protected definition bool.is_inhabited [instance] : inhabited bool := inhabited.mk ff inductive nonempty [class] (A : Type) : Prop := intro : A → nonempty A protected definition nonempty.elim {A : Type} {B : Prop} (H1 : nonempty A) (H2 : A → B) : B := nonempty.rec H2 H1 theorem nonempty_of_inhabited [instance] {A : Type} [H : inhabited A] : nonempty A := nonempty.intro !default /- subsingleton -/ inductive subsingleton [class] (A : Type) : Prop := intro : (∀ a b : A, a = b) → subsingleton A protected definition subsingleton.elim {A : Type} [H : subsingleton A] : ∀(a b : A), a = b := subsingleton.rec (λp, p) H definition subsingleton_prop [instance] (p : Prop) : subsingleton p := subsingleton.intro (λa b, !proof_irrel) definition subsingleton_decidable [instance] (p : Prop) : subsingleton (decidable p) := subsingleton.intro (λ d₁, match d₁ with | inl t₁ := (λ d₂, match d₂ with | inl t₂ := eq.rec_on (proof_irrel t₁ t₂) rfl | inr f₂ := absurd t₁ f₂ end) | inr f₁ := (λ d₂, match d₂ with | inl t₂ := absurd t₂ f₁ | inr f₂ := eq.rec_on (proof_irrel f₁ f₂) rfl end) end) protected theorem rec_subsingleton {p : Prop} [H : decidable p] {H1 : p → Type} {H2 : ¬p → Type} [H3 : Π(h : p), subsingleton (H1 h)] [H4 : Π(h : ¬p), subsingleton (H2 h)] : subsingleton (decidable.rec_on H H1 H2) := decidable.rec_on H (λh, H3 h) (λh, H4 h) --this can be proven using dependent version of "by_cases" theorem if_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (ite c t e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H theorem if_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (ite c t e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H theorem if_t_t [simp] (c : Prop) [H : decidable c] {A : Type} (t : A) : (ite c t t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H theorem implies_of_if_pos {c t e : Prop} [H : decidable c] (h : ite c t e) : c → t := assume Hc, eq.rec_on (if_pos Hc) h theorem implies_of_if_neg {c t e : Prop} [H : decidable c] (h : ite c t e) : ¬c → e := assume Hnc, eq.rec_on (if_neg Hnc) h theorem if_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c] {x y u v : A} (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : ite b x y = ite c u v := decidable.rec_on dec_b (λ hp : b, calc ite b x y = x : if_pos hp ... = u : h_t (iff.mp h_c hp) ... = ite c u v : if_pos (iff.mp h_c hp)) (λ hn : ¬b, calc ite b x y = y : if_neg hn ... = v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... = ite c u v : if_neg (iff.mp (not_iff_not_of_iff h_c) hn)) theorem if_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c] {x y u v : A} (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : ite b x y = ite c u v := @if_ctx_congr A b c dec_b dec_c x y u v h_c (λ h, h_t) (λ h, h_e) theorem if_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A} (h_c : b ↔ c) (h_t : c → x = u) (h_e : ¬c → y = v) : ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := @if_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x y u v h_c h_t h_e theorem if_simp_congr [congr] {A : Type} {b c : Prop} [dec_b : decidable b] {x y u v : A} (h_c : b ↔ c) (h_t : x = u) (h_e : y = v) : ite b x y = (@ite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := @if_ctx_simp_congr A b c dec_b x y u v h_c (λ h, h_t) (λ h, h_e) theorem if_congr_prop {b c x y u v : Prop} [dec_b : decidable b] [dec_c : decidable c] (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : ite b x y ↔ ite c u v := decidable.rec_on dec_b (λ hp : b, calc ite b x y ↔ x : iff.of_eq (if_pos hp) ... ↔ u : h_t (iff.mp h_c hp) ... ↔ ite c u v : iff.of_eq (if_pos (iff.mp h_c hp))) (λ hn : ¬b, calc ite b x y ↔ y : iff.of_eq (if_neg hn) ... ↔ v : h_e (iff.mp (not_iff_not_of_iff h_c) hn) ... ↔ ite c u v : iff.of_eq (if_neg (iff.mp (not_iff_not_of_iff h_c) hn))) theorem if_ctx_simp_congr_prop {b c x y u v : Prop} [dec_b : decidable b] (h_c : b ↔ c) (h_t : c → (x ↔ u)) (h_e : ¬c → (y ↔ v)) : ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) := @if_congr_prop b c x y u v dec_b (decidable_of_decidable_of_iff dec_b h_c) h_c h_t h_e theorem if_simp_congr_prop [congr] {b c x y u v : Prop} [dec_b : decidable b] (h_c : b ↔ c) (h_t : x ↔ u) (h_e : y ↔ v) : ite b x y ↔ (@ite c (decidable_of_decidable_of_iff dec_b h_c) Prop u v) := @if_ctx_simp_congr_prop b c x y u v dec_b h_c (λ h, h_t) (λ h, h_e) theorem dif_pos {c : Prop} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = t Hc := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H theorem dif_neg {c : Prop} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : dite c t e = e Hnc := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H theorem dif_ctx_congr {A : Type} {b c : Prop} [dec_b : decidable b] [dec_c : decidable c] {x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A} (h_c : b ↔ c) (h_t : ∀ (h : c), x (iff.mpr h_c h) = u h) (h_e : ∀ (h : ¬c), y (iff.mpr (not_iff_not_of_iff h_c) h) = v h) : (@dite b dec_b A x y) = (@dite c dec_c A u v) := decidable.rec_on dec_b (λ hp : b, calc dite b x y = x hp : dif_pos hp ... = x (iff.mpr h_c (iff.mp h_c hp)) : proof_irrel ... = u (iff.mp h_c hp) : h_t ... = dite c u v : dif_pos (iff.mp h_c hp)) (λ hn : ¬b, let h_nc : ¬b ↔ ¬c := not_iff_not_of_iff h_c in calc dite b x y = y hn : dif_neg hn ... = y (iff.mpr h_nc (iff.mp h_nc hn)) : proof_irrel ... = v (iff.mp h_nc hn) : h_e ... = dite c u v : dif_neg (iff.mp h_nc hn)) theorem dif_ctx_simp_congr {A : Type} {b c : Prop} [dec_b : decidable b] {x : b → A} {u : c → A} {y : ¬b → A} {v : ¬c → A} (h_c : b ↔ c) (h_t : ∀ (h : c), x (iff.mpr h_c h) = u h) (h_e : ∀ (h : ¬c), y (iff.mpr (not_iff_not_of_iff h_c) h) = v h) : (@dite b dec_b A x y) = (@dite c (decidable_of_decidable_of_iff dec_b h_c) A u v) := @dif_ctx_congr A b c dec_b (decidable_of_decidable_of_iff dec_b h_c) x u y v h_c h_t h_e -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. theorem dite_ite_eq (c : Prop) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl definition is_true (c : Prop) [H : decidable c] : Prop := if c then true else false definition is_false (c : Prop) [H : decidable c] : Prop := if c then false else true theorem of_is_true {c : Prop} [H₁ : decidable c] (H₂ : is_true c) : c := decidable.rec_on H₁ (λ Hc, Hc) (λ Hnc, !false.rec (if_neg Hnc ▸ H₂)) notation `dec_trivial` := of_is_true trivial theorem not_of_not_is_true {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_true c) : ¬ c := if Hc : c then absurd trivial (if_pos Hc ▸ H₂) else Hc theorem not_of_is_false {c : Prop} [H₁ : decidable c] (H₂ : is_false c) : ¬ c := if Hc : c then !false.rec (if_pos Hc ▸ H₂) else Hc theorem of_not_is_false {c : Prop} [H₁ : decidable c] (H₂ : ¬ is_false c) : c := if Hc : c then Hc else absurd trivial (if_neg Hc ▸ H₂) -- namespace used to collect congruence rules for "contextual simplification" namespace contextual attribute if_ctx_simp_congr [congr] attribute if_ctx_simp_congr_prop [congr] attribute dif_ctx_simp_congr [congr] end contextual