-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Floris van Doorn, Jakob von Raumer import .basic open eq precategory sigma sigma.ops equiv is_equiv function is_trunc namespace morphism variables {ob : Type} [C : precategory ob] include C variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} inductive is_section [class] (f : a ⟶ b) : Type := mk : ∀{g}, g ∘ f = id → is_section f inductive is_retraction [class] (f : a ⟶ b) : Type := mk : ∀{g}, f ∘ g = id → is_retraction f inductive is_iso [class] (f : a ⟶ b) : Type := mk : ∀{g}, g ∘ f = id → f ∘ g = id → is_iso f attribute is_iso [multiple-instances] definition retraction_of (f : a ⟶ b) [H : is_section f] : hom b a := is_section.rec (λg h, g) H definition section_of (f : a ⟶ b) [H : is_retraction f] : hom b a := is_retraction.rec (λg h, g) H definition inverse (f : a ⟶ b) [H : is_iso f] : hom b a := is_iso.rec (λg h1 h2, g) H postfix `⁻¹` := inverse theorem inverse_compose (f : a ⟶ b) [H : is_iso f] : f⁻¹ ∘ f = id := is_iso.rec (λg h1 h2, h1) H theorem compose_inverse (f : a ⟶ b) [H : is_iso f] : f ∘ f⁻¹ = id := is_iso.rec (λg h1 h2, h2) H theorem retraction_compose (f : a ⟶ b) [H : is_section f] : retraction_of f ∘ f = id := is_section.rec (λg h, h) H theorem compose_section (f : a ⟶ b) [H : is_retraction f] : f ∘ section_of f = id := is_retraction.rec (λg h, h) H theorem is_section_of_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_section f := is_section.mk !inverse_compose theorem is_retraction_of_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_retraction f := is_retraction.mk !compose_inverse theorem is_iso_id [instance] : is_iso (ID a) := is_iso.mk !id_compose !id_compose theorem is_iso_inverse [instance] (f : a ⟶ b) [H : is_iso f] : is_iso (f⁻¹) := is_iso.mk !compose_inverse !inverse_compose theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a} (Hl : g ∘ f = id) (Hr : f ∘ g' = id) : g = g' := calc g = g ∘ id : !id_right ... = g ∘ f ∘ g' : Hr ... = (g ∘ f) ∘ g' : !assoc ... = id ∘ g' : Hl ... = g' : id_left theorem retraction_eq_intro [H : is_section f] (H2 : f ∘ h = id) : retraction_of f = h := left_inverse_eq_right_inverse !retraction_compose H2 theorem section_eq_intro [H : is_retraction f] (H2 : h ∘ f = id) : section_of f = h := (left_inverse_eq_right_inverse H2 !compose_section)⁻¹ theorem inverse_eq_intro_right [H : is_iso f] (H2 : f ∘ h = id) : f⁻¹ = h := left_inverse_eq_right_inverse !inverse_compose H2 theorem inverse_eq_intro_left [H : is_iso f] (H2 : h ∘ f = id) : f⁻¹ = h := (left_inverse_eq_right_inverse H2 !compose_inverse)⁻¹ theorem section_of_eq_retraction_of (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] : retraction_of f = section_of f := retraction_eq_intro !compose_section theorem is_iso_of_is_retraction_of_is_section (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] : is_iso f := is_iso.mk ((section_of_eq_retraction_of f) ▹ (retraction_compose f)) (compose_section f) theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H = @inverse _ _ _ _ f H' := inverse_eq_intro_left !inverse_compose theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ = f := inverse_eq_intro_right !inverse_compose theorem retraction_of_id : retraction_of (ID a) = id := retraction_eq_intro !id_compose theorem section_of_id : section_of (ID a) = id := section_eq_intro !id_compose theorem id_inverse [H : is_iso (ID a)] : (ID a)⁻¹ = id := inverse_eq_intro_left !id_compose theorem is_section_comp [instance] [Hf : is_section f] [Hg : is_section g] : is_section (g ∘ f) := have aux : retraction_of g ∘ g ∘ f = (retraction_of g ∘ g) ∘ f, from !assoc, is_section.mk (calc (retraction_of f ∘ retraction_of g) ∘ g ∘ f = retraction_of f ∘ retraction_of g ∘ g ∘ f : assoc ... = retraction_of f ∘ ((retraction_of g ∘ g) ∘ f) : aux ... = retraction_of f ∘ id ∘ f : {retraction_compose g} ... = retraction_of f ∘ f : {id_left f} ... = id : retraction_compose f) theorem is_retraction_comp [instance] (Hf : is_retraction f) (Hg : is_retraction g) : is_retraction (g ∘ f) := have aux : f ∘ section_of f ∘ section_of g = (f ∘ section_of f) ∘ section_of g, from !assoc, is_retraction.mk (calc (g ∘ f) ∘ section_of f ∘ section_of g = g ∘ f ∘ section_of f ∘ section_of g : assoc ... = g ∘ (f ∘ section_of f) ∘ section_of g : aux ... = g ∘ id ∘ section_of g : compose_section f ... = g ∘ section_of g : {id_left (section_of g)} ... = id : compose_section) theorem is_inverse_comp [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) := !is_iso_of_is_retraction_of_is_section structure isomorphic (a b : ob) := (iso : hom a b) [is_iso : is_iso iso] infix `≅`:50 := morphism.isomorphic attribute isomorphic.is_iso [instance] namespace isomorphic definition refl (a : ob) : a ≅ a := mk id definition symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a := mk (inverse (iso H)) definition trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c := mk (iso H2 ∘ iso H1) end isomorphic inductive is_mono [class] (f : a ⟶ b) : Type := mk : (∀c (g h : hom c a), f ∘ g = f ∘ h → g = h) → is_mono f inductive is_epi [class] (f : a ⟶ b) : Type := mk : (∀c (g h : hom b c), g ∘ f = h ∘ f → g = h) → is_epi f theorem is_mono.elim [H : is_mono f] {g h : c ⟶ a} (H2 : f ∘ g = f ∘ h) : g = h := is_mono.rec (λH3, H3 c g h H2) H theorem is_epi.elim [H : is_epi f] {g h : b ⟶ c} (H2 : g ∘ f = h ∘ f) : g = h := is_epi.rec (λH3, H3 c g h H2) H theorem is_mono_of_is_section [instance] (f : a ⟶ b) [H : is_section f] : is_mono f := is_mono.mk (λ c g h H, calc g = id ∘ g : id_left ... = (retraction_of f ∘ f) ∘ g : retraction_compose f ... = retraction_of f ∘ f ∘ g : assoc ... = retraction_of f ∘ f ∘ h : H ... = (retraction_of f ∘ f) ∘ h : assoc ... = id ∘ h : retraction_compose f ... = h : id_left) theorem is_epi_of_is_retraction [instance] (f : a ⟶ b) [H : is_retraction f] : is_epi f := is_epi.mk (λ c g h H, calc g = g ∘ id : id_right ... = g ∘ f ∘ section_of f : compose_section f ... = (g ∘ f) ∘ section_of f : assoc ... = (h ∘ f) ∘ section_of f : H ... = h ∘ f ∘ section_of f : assoc ... = h ∘ id : compose_section f ... = h : id_right) theorem is_mono_comp [instance] [Hf : is_mono f] [Hg : is_mono g] : is_mono (g ∘ f) := is_mono.mk (λ d h₁ h₂ H, have H2 : g ∘ (f ∘ h₁) = g ∘ (f ∘ h₂), from calc g ∘ (f ∘ h₁) = (g ∘ f) ∘ h₁ : !assoc ... = (g ∘ f) ∘ h₂ : H ... = g ∘ (f ∘ h₂) : !assoc, is_mono.elim (is_mono.elim H2)) theorem is_epi_comp [instance] [Hf : is_epi f] [Hg : is_epi g] : is_epi (g ∘ f) := is_epi.mk (λ d h₁ h₂ H, have H2 : (h₁ ∘ g) ∘ f = (h₂ ∘ g) ∘ f, from calc (h₁ ∘ g) ∘ f = h₁ ∘ g ∘ f : !assoc ... = h₂ ∘ g ∘ f : H ... = (h₂ ∘ g) ∘ f: !assoc, is_epi.elim (is_epi.elim H2)) end morphism namespace morphism --rewrite lemmas for inverses, modified from --https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v namespace iso section variables {ob : Type} [C : precategory ob] include C variables {a b c d : ob} (f : b ⟶ a) (r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b) (g : d ⟶ c) variable [Hq : is_iso q] include Hq theorem compose_pV : q ∘ q⁻¹ = id := !compose_inverse theorem compose_Vp : q⁻¹ ∘ q = id := !inverse_compose theorem compose_V_pp : q⁻¹ ∘ (q ∘ p) = p := calc q⁻¹ ∘ (q ∘ p) = (q⁻¹ ∘ q) ∘ p : assoc (q⁻¹) q p ... = id ∘ p : inverse_compose q ... = p : id_left p theorem compose_p_Vp : q ∘ (q⁻¹ ∘ g) = g := calc q ∘ (q⁻¹ ∘ g) = (q ∘ q⁻¹) ∘ g : assoc q (q⁻¹) g ... = id ∘ g : compose_inverse q ... = g : id_left g theorem compose_pp_V : (r ∘ q) ∘ q⁻¹ = r := calc (r ∘ q) ∘ q⁻¹ = r ∘ q ∘ q⁻¹ : assoc r q (q⁻¹)⁻¹ ... = r ∘ id : compose_inverse q ... = r : id_right r theorem compose_pV_p : (f ∘ q⁻¹) ∘ q = f := calc (f ∘ q⁻¹) ∘ q = f ∘ q⁻¹ ∘ q : assoc f (q⁻¹) q⁻¹ ... = f ∘ id : inverse_compose q ... = f : id_right f theorem con_inv [H' : is_iso p] [Hpq : is_iso (q ∘ p)] : (q ∘ p)⁻¹ = p⁻¹ ∘ q⁻¹ := have H1 : (p⁻¹ ∘ q⁻¹) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)), from assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹, have H2 : (p⁻¹) ∘ (q⁻¹ ∘ (q ∘ p)) = p⁻¹ ∘ p, from ap _ (compose_V_pp q p), have H3 : p⁻¹ ∘ p = id, from inverse_compose p, inverse_eq_intro_left (H1 ⬝ H2 ⬝ H3) --the proof using calc is hard for the unifier (needs ~90k steps) -- inverse_eq_intro_left -- (calc -- (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)) : assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹ -- ... = (p⁻¹) ∘ p : congr_arg (λx, p⁻¹ ∘ x) (compose_V_pp q p) -- ... = id : inverse_compose p) theorem inv_con_inv_left [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ = g⁻¹ ∘ q := inverse_involutive q ▹ con_inv (q⁻¹) g theorem inv_con_inv_right [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ = f ∘ q⁻¹ := inverse_involutive f ▹ con_inv q (f⁻¹) theorem inv_con_inv_inv [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ = r ∘ q := inverse_involutive r ▹ inv_con_inv_left q (r⁻¹) end section variables {ob : Type} {C : precategory ob} include C variables {d c b a : ob} {i : b ⟶ c} {f : b ⟶ a} {r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b} {g : d ⟶ c} {h : c ⟶ b} {x : b ⟶ d} {z : a ⟶ c} {y : d ⟶ b} {w : c ⟶ a} variable [Hq : is_iso q] include Hq theorem con_eq_of_eq_inv_con (H : y = q⁻¹ ∘ g) : q ∘ y = g := H⁻¹ ▹ compose_p_Vp q g theorem con_eq_of_eq_con_inv (H : w = f ∘ q⁻¹) : w ∘ q = f := H⁻¹ ▹ compose_pV_p f q theorem inv_con_eq_of_eq_con (H : z = q ∘ p) : q⁻¹ ∘ z = p := H⁻¹ ▹ compose_V_pp q p theorem con_inv_eq_of_eq_con (H : x = r ∘ q) : x ∘ q⁻¹ = r := H⁻¹ ▹ compose_pp_V r q theorem eq_con_of_inv_con_eq (H : q⁻¹ ∘ g = y) : g = q ∘ y := con_eq_of_eq_inv_con (H⁻¹)⁻¹ theorem eq_con_of_con_inv_eq (H : f ∘ q⁻¹ = w) : f = w ∘ q := con_eq_of_eq_con_inv (H⁻¹)⁻¹ theorem eq_inv_con_of_con_eq (H : q ∘ p = z) : p = q⁻¹ ∘ z := inv_con_eq_of_eq_con (H⁻¹)⁻¹ theorem eq_con_inv_of_con_eq (H : r ∘ q = x) : r = x ∘ q⁻¹ := con_inv_eq_of_eq_con (H⁻¹)⁻¹ theorem eq_inv_of_con_eq_idp' (H : h ∘ q = id) : h = q⁻¹ := inverse_eq_intro_left H⁻¹ theorem eq_inv_of_con_eq_idp (H : q ∘ h = id) : h = q⁻¹ := inverse_eq_intro_right H⁻¹ theorem eq_of_con_inv_eq_idp (H : i ∘ q⁻¹ = id) : i = q := eq_inv_of_con_eq_idp' H ⬝ inverse_involutive q theorem eq_of_inv_con_eq_idp (H : q⁻¹ ∘ i = id) : i = q := eq_inv_of_con_eq_idp H ⬝ inverse_involutive q theorem eq_of_idp_eq_con_inv (H : id = i ∘ q⁻¹) : q = i := eq_of_con_inv_eq_idp (H⁻¹)⁻¹ theorem eq_of_idp_eq_inv_con (H : id = q⁻¹ ∘ i) : q = i := eq_of_inv_con_eq_idp (H⁻¹)⁻¹ theorem inv_eq_of_idp_eq_con (H : id = h ∘ q) : q⁻¹ = h := eq_inv_of_con_eq_idp' (H⁻¹)⁻¹ theorem inv_eq_of_idp_eq_con' (H : id = q ∘ h) : q⁻¹ = h := eq_inv_of_con_eq_idp (H⁻¹)⁻¹ end end iso end morphism