/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.list.perm Author: Leonardo de Moura List permutations -/ import data.list.basic data.list.set open list setoid nat binary variables {A B : Type} inductive perm : list A → list A → Prop := | nil : perm [] [] | skip : Π (x : A) {l₁ l₂ : list A}, perm l₁ l₂ → perm (x::l₁) (x::l₂) | swap : Π (x y : A) (l : list A), perm (y::x::l) (x::y::l) | trans : Π {l₁ l₂ l₃ : list A}, perm l₁ l₂ → perm l₂ l₃ → perm l₁ l₃ namespace perm infix ~:50 := perm theorem eq_nil_of_perm_nil {l₁ : list A} (p : [] ~ l₁) : l₁ = [] := have gen : ∀ (l₂ : list A) (p : l₂ ~ l₁), l₂ = [] → l₁ = [], from take l₂ p, perm.induction_on p (λ h, h) (λ x y l₁ l₂ p₁ r₁, list.no_confusion r₁) (λ x y l e, list.no_confusion e) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), gen [] p rfl theorem not_perm_nil_cons (x : A) (l : list A) : ¬ [] ~ (x::l) := have gen : ∀ (l₁ l₂ : list A) (p : l₁ ~ l₂), l₁ = [] → l₂ = (x::l) → false, from take l₁ l₂ p, perm.induction_on p (λ e₁ e₂, list.no_confusion e₂) (λ x l₁ l₂ p₁ r₁ e₁ e₂, list.no_confusion e₁) (λ x y l e₁ e₂, list.no_confusion e₁) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e₁ e₂, begin rewrite [e₂ at *, e₁ at *], have e₃ : l₂ = [], from eq_nil_of_perm_nil p₁, exact (r₂ e₃ rfl) end), assume p, gen [] (x::l) p rfl rfl protected theorem refl : ∀ (l : list A), l ~ l | [] := nil | (x::xs) := skip x (refl xs) protected theorem symm : ∀ {l₁ l₂ : list A}, l₁ ~ l₂ → l₂ ~ l₁ := take l₁ l₂ p, perm.induction_on p nil (λ x l₁ l₂ p₁ r₁, skip x r₁) (λ x y l, swap y x l) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₂ r₁) theorem eqv (A : Type) : equivalence (@perm A) := mk_equivalence (@perm A) (@perm.refl A) (@perm.symm A) (@perm.trans A) protected definition is_setoid [instance] (A : Type) : setoid (list A) := setoid.mk (@perm A) (perm.eqv A) calc_refl perm.refl calc_symm perm.symm calc_trans perm.trans theorem mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∈ l₁ → a ∈ l₂ := assume p, perm.induction_on p (λ h, h) (λ x l₁ l₂ p₁ r₁ i, or.elim (eq_or_mem_of_mem_cons i) (assume aeqx : a = x, by rewrite aeqx; apply !mem_cons) (assume ainl₁ : a ∈ l₁, or.inr (r₁ ainl₁))) (λ x y l ainyxl, or.elim (eq_or_mem_of_mem_cons ainyxl) (assume aeqy : a = y, by rewrite aeqy; exact (or.inr !mem_cons)) (assume ainxl : a ∈ x::l, or.elim (eq_or_mem_of_mem_cons ainxl) (assume aeqx : a = x, or.inl aeqx) (assume ainl : a ∈ l, or.inr (or.inr ainl)))) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ ainl₁, r₂ (r₁ ainl₁)) theorem not_mem_perm {a : A} {l₁ l₂ : list A} : l₁ ~ l₂ → a ∉ l₁ → a ∉ l₂ := assume p nainl₁ ainl₂, absurd (mem_perm (symm p) ainl₂) nainl₁ theorem perm_app_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (l₁++t₁) ~ (l₂++t₁) := assume p, perm.induction_on p !refl (λ x l₁ l₂ p₁ r₁, skip x r₁) (λ x y l, !swap) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_app_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (l++t₁) ~ (l++t₂) := list.induction_on l (λ p, p) (λ x xs r p, skip x (r p)) theorem perm_app {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (l₁++t₁) ~ (l₂++t₂) := assume p₁ p₂, trans (perm_app_left t₁ p₁) (perm_app_right l₂ p₂) theorem perm_app_cons (a : A) {h₁ h₂ t₁ t₂ : list A} : h₁ ~ h₂ → t₁ ~ t₂ → (h₁ ++ (a::t₁)) ~ (h₂ ++ (a::t₂)) := assume p₁ p₂, perm_app p₁ (skip a p₂) theorem perm_cons_app (a : A) : ∀ (l : list A), (a::l) ~ (l ++ [a]) | [] := !refl | (x::xs) := calc a::x::xs ~ x::a::xs : swap x a xs ... ~ x::(xs++[a]) : skip x (perm_cons_app xs) theorem perm_app_comm {l₁ l₂ : list A} : (l₁++l₂) ~ (l₂++l₁) := list.induction_on l₁ (by rewrite [append_nil_right, append_nil_left]; apply refl) (λ a t r, calc a::(t++l₂) ~ a::(l₂++t) : skip a r ... ~ l₂++t++[a] : perm_cons_app ... = l₂++(t++[a]) : append.assoc ... ~ l₂++(a::t) : perm_app_right l₂ (symm (perm_cons_app a t))) theorem length_eq_length_of_perm {l₁ l₂ : list A} : l₁ ~ l₂ → length l₁ = length l₂ := assume p, perm.induction_on p rfl (λ x l₁ l₂ p r, by rewrite [*length_cons, r]) (λ x y l, by rewrite *length_cons) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, eq.trans r₁ r₂) theorem eq_singlenton_of_perm_inv (a : A) {l : list A} : [a] ~ l → l = [a] := have gen : ∀ l₂, perm l₂ l → l₂ = [a] → l = [a], from take l₂, assume p, perm.induction_on p (λ e, e) (λ x l₁ l₂ p r e, list.no_confusion e (λ (e₁ : x = a) (e₂ : l₁ = []), begin rewrite [e₁, e₂ at p], have h₁ : l₂ = [], from eq_nil_of_perm_nil p, rewrite h₁ end)) (λ x y l e, list.no_confusion e (λ e₁ e₂, list.no_confusion e₂)) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂ e, r₂ (r₁ e)), assume p, gen [a] p rfl theorem eq_singlenton_of_perm (a b : A) : [a] ~ [b] → a = b := assume p, list.no_confusion (eq_singlenton_of_perm_inv a p) (λ e₁ e₂, by rewrite e₁) theorem perm_rev : ∀ (l : list A), l ~ (reverse l) | [] := nil | (x::xs) := calc x::xs ~ xs++[x] : perm_cons_app x xs ... ~ reverse xs ++ [x] : perm_app_left [x] (perm_rev xs) ... = reverse (x::xs) : by rewrite [reverse_cons, concat_eq_append] theorem perm_middle (a : A) (l₁ l₂ : list A) : (a::l₁)++l₂ ~ l₁++(a::l₂) := calc (a::l₁) ++ l₂ = a::(l₁++l₂) : rfl ... ~ l₁++l₂++[a] : perm_cons_app ... = l₁++(l₂++[a]) : append.assoc ... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂)) theorem perm_cons_app_cons {l l₁ l₂ : list A} (a : A) : l ~ l₁++l₂ → a::l ~ l₁++(a::l₂) := assume p, calc a::l ~ l++[a] : perm_cons_app ... ~ l₁++l₂++[a] : perm_app_left [a] p ... = l₁++(l₂++[a]) : append.assoc ... ~ l₁++(a::l₂) : perm_app_right l₁ (symm (perm_cons_app a l₂)) open decidable theorem perm_erase [H : decidable_eq A] {a : A} : ∀ {l : list A}, a ∈ l → l ~ a::(erase a l) | [] h := absurd h !not_mem_nil | (x::t) h := by_cases (assume aeqx : a = x, by rewrite [aeqx, erase_cons_head]; exact !perm.refl) (assume naeqx : a ≠ x, have aint : a ∈ t, from mem_of_ne_of_mem naeqx h, have aux : t ~ a :: erase a t, from perm_erase aint, calc x::t ~ x::a::(erase a t) : skip x aux ... ~ a::x::(erase a t) : swap ... = a::(erase a (x::t)) : by rewrite [!erase_cons_tail naeqx]) theorem erase_perm_erase_of_perm [H : decidable_eq A] (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → erase a l₁ ~ erase a l₂ := assume p, perm.induction_on p nil (λ x t₁ t₂ p r, by_cases (assume aeqx : a = x, by rewrite [aeqx, *erase_cons_head]; exact p) (assume naeqx : a ≠ x, by rewrite [*erase_cons_tail _ naeqx]; exact (skip x r))) (λ x y l, by_cases (assume aeqx : a = x, by_cases (assume aeqy : a = y, by rewrite [-aeqx, -aeqy]; exact !perm.refl) (assume naeqy : a ≠ y, by rewrite [-aeqx, erase_cons_tail _ naeqy, *erase_cons_head]; exact !perm.refl)) (assume naeqx : a ≠ x, by_cases (assume aeqy : a = y, by rewrite [-aeqy, erase_cons_tail _ naeqx, *erase_cons_head]; exact !perm.refl) (assume naeqy : a ≠ y, by rewrite[erase_cons_tail _ naeqx, *erase_cons_tail _ naeqy, erase_cons_tail _ naeqx]; exact !swap))) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_induction_on {P : list A → list A → Prop} {l₁ l₂ : list A} (p : l₁ ~ l₂) (h₁ : P [] []) (h₂ : ∀ x l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (x::l₁) (x::l₂)) (h₃ : ∀ x y l₁ l₂, l₁ ~ l₂ → P l₁ l₂ → P (y::x::l₁) (x::y::l₂)) (h₄ : ∀ l₁ l₂ l₃, l₁ ~ l₂ → l₂ ~ l₃ → P l₁ l₂ → P l₂ l₃ → P l₁ l₃) : P l₁ l₂ := have P_refl : ∀ l, P l l | [] := h₁ | (x::xs) := h₂ x xs xs !refl (P_refl xs), perm.induction_on p h₁ h₂ (λ x y l, h₃ x y l l !refl !P_refl) h₄ theorem xswap {l₁ l₂ : list A} (x y : A) : l₁ ~ l₂ → x::y::l₁ ~ y::x::l₂ := assume p, calc x::y::l₁ ~ y::x::l₁ : swap ... ~ y::x::l₂ : skip y (skip x p) theorem perm_map (f : A → B) {l₁ l₂ : list A} : l₁ ~ l₂ → map f l₁ ~ map f l₂ := assume p, perm_induction_on p nil (λ x l₁ l₂ p r, skip (f x) r) (λ x y l₁ l₂ p r, xswap (f y) (f x) r) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) lemma perm_of_qeq {a : A} {l₁ l₂ : list A} : l₁≈a|l₂ → l₁~a::l₂ := assume q, qeq.induction_on q (λ h, !refl) (λ b t₁ t₂ q₁ r₁, calc b::t₂ ~ b::a::t₁ : skip b r₁ ... ~ a::b::t₁ : swap) /- permutation is decidable if A has decidable equality -/ section dec open decidable variable [Ha : decidable_eq A] include Ha definition decidable_perm_aux : ∀ (n : nat) (l₁ l₂ : list A), length l₁ = n → length l₂ = n → decidable (l₁ ~ l₂) | 0 l₁ l₂ H₁ H₂ := assert l₁n : l₁ = [], from eq_nil_of_length_eq_zero H₁, assert l₂n : l₂ = [], from eq_nil_of_length_eq_zero H₂, by rewrite [l₁n, l₂n]; exact (inl perm.nil) | (n+1) (x::t₁) l₂ H₁ H₂ := by_cases (assume xinl₂ : x ∈ l₂, let t₂ : list A := erase x l₂ in have len_t₁ : length t₁ = n, from nat.no_confusion H₁ (λ e, e), assert len_t₂_aux : length t₂ = pred (length l₂), from length_erase_of_mem xinl₂, assert len_t₂ : length t₂ = n, by rewrite [len_t₂_aux, H₂], match decidable_perm_aux n t₁ t₂ len_t₁ len_t₂ with | inl p := inl (calc x::t₁ ~ x::(erase x l₂) : skip x p ... ~ l₂ : perm_erase xinl₂) | inr np := inr (λ p : x::t₁ ~ l₂, assert p₁ : erase x (x::t₁) ~ erase x l₂, from erase_perm_erase_of_perm x p, have p₂ : t₁ ~ erase x l₂, by rewrite [erase_cons_head at p₁]; exact p₁, absurd p₂ np) end) (assume nxinl₂ : x ∉ l₂, inr (λ p : x::t₁ ~ l₂, absurd (mem_perm p !mem_cons) nxinl₂)) definition decidable_perm [instance] : ∀ (l₁ l₂ : list A), decidable (l₁ ~ l₂) := λ l₁ l₂, by_cases (assume eql : length l₁ = length l₂, decidable_perm_aux (length l₂) l₁ l₂ eql rfl) (assume neql : length l₁ ≠ length l₂, inr (λ p : l₁ ~ l₂, absurd (length_eq_length_of_perm p) neql)) end dec -- Auxiliary theorem for performing cases-analysis on l₂. -- We use it to prove perm_inv_core. private theorem discr {P : Prop} {a b : A} {l₁ l₂ l₃ : list A} : a::l₁ = l₂++(b::l₃) → (l₂ = [] → a = b → l₁ = l₃ → P) → (∀ t, l₂ = a::t → l₁ = t++(b::l₃) → P) → P := match l₂ with | [] := λ e h₁ h₂, list.no_confusion e (λ e₁ e₂, h₁ rfl e₁ e₂) | h::t := λ e h₁ h₂, begin apply list.no_confusion e, intro e₁ e₂, rewrite e₁ at h₂, exact h₂ t rfl e₂ end end -- Auxiliary theorem for performing cases-analysis on l₂. -- We use it to prove perm_inv_core. private theorem discr₂ {P : Prop} {a b c : A} {l₁ l₂ l₃ : list A} : a::b::l₁ = l₂++(c::l₃) → (l₂ = [] → l₃ = b::l₁ → a = c → P) → (l₂ = [a] → b = c → l₁ = l₃ → P) → (∀ t, l₂ = a::b::t → l₁ = t++(c::l₃) → P) → P := match l₂ with | [] := λ e H₁ H₂ H₃, list.no_confusion e (λ a_eq_c b_l₁_eq_l₃, H₁ rfl (eq.symm b_l₁_eq_l₃) a_eq_c) | [h₁] := λ e H₁ H₂ H₃, begin rewrite [append_cons at e, append_nil_left at e], apply list.no_confusion e, intro a_eq_h₁ rest, apply list.no_confusion rest, intro b_eq_c l₁_eq_l₃, rewrite [a_eq_h₁ at H₂, b_eq_c at H₂, l₁_eq_l₃ at H₂], exact H₂ rfl rfl rfl end | h₁::h₂::t₂ := λ e H₁ H₂ H₃, begin apply list.no_confusion e, intro a_eq_h₁ rest, apply list.no_confusion rest, intro b_eq_h₂ l₁_eq, rewrite [a_eq_h₁ at H₃, b_eq_h₂ at H₃], exact H₃ t₂ rfl l₁_eq end end /- permutation inversion -/ theorem perm_inv_core {l₁ l₂ : list A} (p' : l₁ ~ l₂) : ∀ {a s₁ s₂}, l₁≈a|s₁ → l₂≈a|s₂ → s₁ ~ s₂ := perm_induction_on p' (λ a s₁ s₂ e₁ e₂, have innil : a ∈ [], from mem_head_of_qeq e₁, absurd innil !not_mem_nil) (λ x t₁ t₂ p (r : ∀{a s₁ s₂}, t₁≈a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) a s₁ s₂ e₁ e₂, obtain (s₁₁ s₁₂ : list A) (C₁ : s₁ = s₁₁ ++ s₁₂ ∧ x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁, obtain (s₂₁ s₂₂ : list A) (C₂ : s₂ = s₂₁ ++ s₂₂ ∧ x::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂, discr (and.elim_right C₁) (λ (s₁₁_eq : s₁₁ = []) (x_eq_a : x = a) (t₁_eq : t₁ = s₁₂), assert s₁_p : s₁ ~ t₂, from calc s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁ ... = t₁ : by rewrite [-t₁_eq, s₁₁_eq, append_nil_left] ... ~ t₂ : p, discr (and.elim_right C₂) (λ (s₂₁_eq : s₂₁ = []) (x_eq_a : x = a) (t₂_eq: t₂ = s₂₂), proof calc s₁ ~ t₂ : s₁_p ... = s₂₁ ++ s₂₂ : by rewrite [-t₂_eq, s₂₁_eq, append_nil_left] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)), proof calc s₁ ~ t₂ : s₁_p ... = ts₂₁++(a::s₂₂) : t₂_eq ... ~ (a::ts₂₁)++s₂₂ : !perm_middle ... = s₂₁ ++ s₂₂ : by rewrite [-x_eq_a, -s₂₁_eq] ... = s₂ : by rewrite [and.elim_left C₂] qed)) (λ (ts₁₁ : list A) (s₁₁_eq : s₁₁ = x::ts₁₁) (t₁_eq : t₁ = ts₁₁++(a::s₁₂)), assert t₁_qeq : t₁ ≈ a|(ts₁₁++s₁₂), by rewrite t₁_eq; exact !qeq_app, assert s₁_eq : s₁ = x::(ts₁₁++s₁₂), from calc s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁ ... = x::(ts₁₁++ s₁₂) : by rewrite s₁₁_eq, discr (and.elim_right C₂) (λ (s₂₁_eq : s₂₁ = []) (x_eq_a : x = a) (t₂_eq: t₂ = s₂₂), proof calc s₁ = a::(ts₁₁++s₁₂) : by rewrite [s₁_eq, x_eq_a] ... ~ ts₁₁++(a::s₁₂) : !perm_middle ... = t₁ : t₁_eq ... ~ t₂ : p ... = s₂ : by rewrite [t₂_eq, and.elim_left C₂, s₂₁_eq, append_nil_left] qed) (λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)), assert t₂_qeq : t₂ ≈ a|(ts₂₁++s₂₂), by rewrite t₂_eq; exact !qeq_app, proof calc s₁ = x::(ts₁₁++s₁₂) : s₁_eq ... ~ x::(ts₂₁++s₂₂) : skip x (r t₁_qeq t₂_qeq) ... = s₂ : by rewrite [-append_cons, -s₂₁_eq, and.elim_left C₂] qed))) (λ x y t₁ t₂ p (r : ∀{a s₁ s₂}, t₁≈a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) a s₁ s₂ e₁ e₂, obtain (s₁₁ s₁₂ : list A) (C₁ : s₁ = s₁₁ ++ s₁₂ ∧ y::x::t₁ = s₁₁++(a::s₁₂)), from qeq_split e₁, obtain (s₂₁ s₂₂ : list A) (C₂ : s₂ = s₂₁ ++ s₂₂ ∧ x::y::t₂ = s₂₁++(a::s₂₂)), from qeq_split e₂, discr₂ (and.elim_right C₁) (λ (s₁₁_eq : s₁₁ = []) (s₁₂_eq : s₁₂ = x::t₁) (y_eq_a : y = a), assert s₁_p : s₁ ~ x::t₂, from calc s₁ = s₁₁ ++ s₁₂ : and.elim_left C₁ ... = x::t₁ : by rewrite [s₁₂_eq, s₁₁_eq, append_nil_left] ... ~ x::t₂ : skip x p, discr₂ (and.elim_right C₂) (λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a), proof calc s₁ ~ x::t₂ : s₁_p ... = s₂₁ ++ s₂₂ : by rewrite [x_eq_a, -y_eq_a, -s₂₂_eq, s₂₁_eq, append_nil_left] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂), proof calc s₁ ~ x::t₂ : s₁_p ... = s₂₁ ++ s₂₂ : by rewrite [t₂_eq, s₂₁_eq, append_cons] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)), proof calc s₁ ~ x::t₂ : s₁_p ... = x::(ts₂₁++(y::s₂₂)) : by rewrite [t₂_eq, -y_eq_a] ... ~ x::y::(ts₂₁++s₂₂) : skip x !perm_middle ... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, append_cons] ... = s₂ : by rewrite [and.elim_left C₂] qed)) (λ (s₁₁_eq : s₁₁ = [y]) (x_eq_a : x = a) (t₁_eq : t₁ = s₁₂), assert s₁_p : s₁ ~ y::t₂, from calc s₁ = y::t₁ : by rewrite [and.elim_left C₁, s₁₁_eq, t₁_eq] ... ~ y::t₂ : skip y p, discr₂ (and.elim_right C₂) (λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a), proof calc s₁ ~ y::t₂ : s₁_p ... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, s₂₂_eq] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂), proof calc s₁ ~ y::t₂ : s₁_p ... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, t₂_eq, y_eq_a, -x_eq_a] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)), proof calc s₁ ~ y::t₂ : s₁_p ... = y::(ts₂₁++(x::s₂₂)) : by rewrite [t₂_eq, -x_eq_a] ... ~ y::x::(ts₂₁++s₂₂) : skip y !perm_middle ... ~ x::y::(ts₂₁++s₂₂) : swap ... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq] ... = s₂ : by rewrite [and.elim_left C₂] qed)) (λ (ts₁₁ : list A) (s₁₁_eq : s₁₁ = y::x::ts₁₁) (t₁_eq : t₁ = ts₁₁++(a::s₁₂)), assert s₁_eq : s₁ = y::x::(ts₁₁++s₁₂), by rewrite [and.elim_left C₁, s₁₁_eq], discr₂ (and.elim_right C₂) (λ (s₂₁_eq : s₂₁ = []) (s₂₂_eq : s₂₂ = y::t₂) (x_eq_a : x = a), proof calc s₁ = y::a::(ts₁₁++s₁₂) : by rewrite [s₁_eq, x_eq_a] ... ~ y::(ts₁₁++(a::s₁₂)) : skip y !perm_middle ... = y::t₁ : by rewrite t₁_eq ... ~ y::t₂ : skip y p ... = s₂₁ ++ s₂₂ : by rewrite [s₂₁_eq, s₂₂_eq] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (s₂₁_eq : s₂₁ = [x]) (y_eq_a : y = a) (t₂_eq : t₂ = s₂₂), proof calc s₁ = y::x::(ts₁₁++s₁₂) : by rewrite s₁_eq ... ~ x::y::(ts₁₁++s₁₂) : swap ... = x::a::(ts₁₁++s₁₂) : by rewrite y_eq_a ... ~ x::(ts₁₁++(a::s₁₂)) : skip x !perm_middle ... = x::t₁ : by rewrite t₁_eq ... ~ x::t₂ : skip x p ... = s₂₁ ++ s₂₂ : by rewrite [t₂_eq, s₂₁_eq] ... = s₂ : by rewrite [and.elim_left C₂] qed) (λ (ts₂₁ : list A) (s₂₁_eq : s₂₁ = x::y::ts₂₁) (t₂_eq : t₂ = ts₂₁++(a::s₂₂)), assert t₁_qeq : t₁ ≈ a|(ts₁₁++s₁₂), by rewrite t₁_eq; exact !qeq_app, assert t₂_qeq : t₂ ≈ a|(ts₂₁++s₂₂), by rewrite t₂_eq; exact !qeq_app, assert p_aux : ts₁₁++s₁₂ ~ ts₂₁++s₂₂, from r t₁_qeq t₂_qeq, proof calc s₁ = y::x::(ts₁₁++s₁₂) : by rewrite s₁_eq ... ~ y::x::(ts₂₁++s₂₂) : skip y (skip x p_aux) ... ~ x::y::(ts₂₁++s₂₂) : swap ... = s₂₁ ++ s₂₂ : by rewrite s₂₁_eq ... = s₂ : by rewrite [and.elim_left C₂] qed))) (λ t₁ t₂ t₃ p₁ p₂ (r₁ : ∀{a s₁ s₂}, t₁ ≈ a|s₁ → t₂≈a|s₂ → s₁ ~ s₂) (r₂ : ∀{a s₁ s₂}, t₂ ≈ a|s₁ → t₃≈a|s₂ → s₁ ~ s₂) a s₁ s₂ e₁ e₂, have aint₁ : a ∈ t₁, from mem_head_of_qeq e₁, have aint₂ : a ∈ t₂, from mem_perm p₁ aint₁, obtain (t₂' : list A) (e₂' : t₂≈a|t₂'), from qeq_of_mem aint₂, calc s₁ ~ t₂' : r₁ e₁ e₂' ... ~ s₂ : r₂ e₂' e₂) theorem perm_cons_inv {a : A} {l₁ l₂ : list A} : a::l₁ ~ a::l₂ → l₁ ~ l₂ := assume p, perm_inv_core p (qeq.qhead a l₁) (qeq.qhead a l₂) theorem perm_app_inv {a : A} {l₁ l₂ l₃ l₄ : list A} : l₁++(a::l₂) ~ l₃++(a::l₄) → l₁++l₂ ~ l₃++l₄ := assume p : l₁++(a::l₂) ~ l₃++(a::l₄), have p' : a::(l₁++l₂) ~ a::(l₃++l₄), from calc a::(l₁++l₂) ~ l₁++(a::l₂) : perm_middle ... ~ l₃++(a::l₄) : p ... ~ a::(l₃++l₄) : symm (!perm_middle), perm_cons_inv p' section foldl variables {f : B → A → B} {l₁ l₂ : list A} variable rcomm : right_commutative f include rcomm theorem foldl_eq_of_perm : l₁ ~ l₂ → ∀ b, foldl f b l₁ = foldl f b l₂ := assume p, perm_induction_on p (λ b, by rewrite *foldl_nil) (λ x t₁ t₂ p r b, calc foldl f b (x::t₁) = foldl f (f b x) t₁ : foldl_cons ... = foldl f (f b x) t₂ : r (f b x) ... = foldl f b (x::t₂) : foldl_cons) (λ x y t₁ t₂ p r b, calc foldl f b (y :: x :: t₁) = foldl f (f (f b y) x) t₁ : by rewrite foldl_cons ... = foldl f (f (f b x) y) t₁ : by rewrite rcomm ... = foldl f (f (f b x) y) t₂ : r (f (f b x) y) ... = foldl f b (x :: y :: t₂) : by rewrite foldl_cons) (λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ b, eq.trans (r₁ b) (r₂ b)) end foldl section foldr variables {f : A → B → B} {l₁ l₂ : list A} variable lcomm : left_commutative f include lcomm theorem foldr_eq_of_perm : l₁ ~ l₂ → ∀ b, foldr f b l₁ = foldr f b l₂ := assume p, perm_induction_on p (λ b, by rewrite *foldl_nil) (λ x t₁ t₂ p r b, calc foldr f b (x::t₁) = f x (foldr f b t₁) : foldr_cons ... = f x (foldr f b t₂) : by rewrite [r b] ... = foldr f b (x::t₂) : foldr_cons) (λ x y t₁ t₂ p r b, calc foldr f b (y :: x :: t₁) = f y (f x (foldr f b t₁)) : by rewrite foldr_cons ... = f x (f y (foldr f b t₁)) : by rewrite lcomm ... = f x (f y (foldr f b t₂)) : by rewrite [r b] ... = foldr f b (x :: y :: t₂) : by rewrite foldr_cons) (λ t₁ t₂ t₃ p₁ p₂ r₁ r₂ a, eq.trans (r₁ a) (r₂ a)) end foldr theorem perm_erase_dup_of_perm [H : decidable_eq A] {l₁ l₂ : list A} : l₁ ~ l₂ → erase_dup l₁ ~ erase_dup l₂ := assume p, perm_induction_on p nil (λ x t₁ t₂ p r, by_cases (λ xint₁ : x ∈ t₁, assert xint₂ : x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup xint₁)), by rewrite [erase_dup_cons_of_mem xint₁, erase_dup_cons_of_mem xint₂]; exact r) (λ nxint₁ : x ∉ t₁, assert nxint₂ : x ∉ t₂, from assume xint₂ : x ∈ t₂, absurd (mem_of_mem_erase_dup (mem_perm (symm r) (mem_erase_dup xint₂))) nxint₁, by rewrite [erase_dup_cons_of_not_mem nxint₂, erase_dup_cons_of_not_mem nxint₁]; exact (skip x r))) (λ y x t₁ t₂ p r, by_cases (λ xinyt₁ : x ∈ y::t₁, by_cases (λ yint₁ : y ∈ t₁, assert yint₂ : y ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup yint₁)), assert yinxt₂ : y ∈ x::t₂, from or.inr (yint₂), or.elim (eq_or_mem_of_mem_cons xinyt₁) (λ xeqy : x = y, assert xint₂ : x ∈ t₂, by rewrite [-xeqy at yint₂]; exact yint₂, begin rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_mem yinxt₂, erase_dup_cons_of_mem yint₁, erase_dup_cons_of_mem xint₂], exact r end) (λ xint₁ : x ∈ t₁, assert xint₂ : x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup xint₁)), begin rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_mem yinxt₂, erase_dup_cons_of_mem yint₁, erase_dup_cons_of_mem xint₂], exact r end)) (λ nyint₁ : y ∉ t₁, assert nyint₂ : y ∉ t₂, from assume yint₂ : y ∈ t₂, absurd (mem_of_mem_erase_dup (mem_perm (symm r) (mem_erase_dup yint₂))) nyint₁, by_cases (λ xeqy : x = y, assert nxint₂ : x ∉ t₂, by rewrite [-xeqy at nyint₂]; exact nyint₂, assert yinxt₂ : y ∈ x::t₂, by rewrite [xeqy]; exact !mem_cons, begin rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_mem yinxt₂, erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_not_mem nxint₂, xeqy], exact skip y r end) (λ xney : x ≠ y, have xint₁ : x ∈ t₁, from or_resolve_right xinyt₁ xney, assert xint₂ : x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup xint₁)), assert nyinxt₂ : y ∉ x::t₂, from assume yinxt₂ : y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons yinxt₂) (λ h, absurd h (ne.symm xney)) (λ h, absurd h nyint₂), begin rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_not_mem nyinxt₂, erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_mem xint₂], exact skip y r end))) (λ nxinyt₁ : x ∉ y::t₁, have xney : x ≠ y, from not_eq_of_not_mem nxinyt₁, have nxint₁ : x ∉ t₁, from not_mem_of_not_mem nxinyt₁, assert nxint₂ : x ∉ t₂, from assume xint₂ : x ∈ t₂, absurd (mem_of_mem_erase_dup (mem_perm (symm r) (mem_erase_dup xint₂))) nxint₁, by_cases (λ yint₁ : y ∈ t₁, assert yinxt₂ : y ∈ x::t₂, from or.inr (mem_of_mem_erase_dup (mem_perm r (mem_erase_dup yint₁))), begin rewrite [erase_dup_cons_of_not_mem nxinyt₁, erase_dup_cons_of_mem yinxt₂, erase_dup_cons_of_mem yint₁, erase_dup_cons_of_not_mem nxint₂], exact skip x r end) (λ nyint₁ : y ∉ t₁, assert nyinxt₂ : y ∉ x::t₂, from assume yinxt₂ : y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons yinxt₂) (λ h, absurd h (ne.symm xney)) (λ h, absurd (mem_of_mem_erase_dup (mem_perm (symm r) (mem_erase_dup h))) nyint₁), begin rewrite [erase_dup_cons_of_not_mem nxinyt₁, erase_dup_cons_of_not_mem nyinxt₂, erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_not_mem nxint₂], exact xswap x y r end))) (λ t₁ t₂ t₃ p₁ p₂ r₁ r₂, trans r₁ r₂) section perm_union variable [H : decidable_eq A] include H theorem perm_union_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (union l₁ t₁) ~ (union l₂ t₁) := assume p, perm.induction_on p (by rewrite [nil_union]; exact !refl) (λ x l₁ l₂ p₁ r₁, by_cases (λ xint₁ : x ∈ t₁, by rewrite [*union_cons_of_mem _ xint₁]; exact r₁) (λ nxint₁ : x ∉ t₁, by rewrite [*union_cons_of_not_mem _ nxint₁]; exact (skip _ r₁))) (λ x y l, by_cases (λ yint : y ∈ t₁, by_cases (λ xint : x ∈ t₁, by rewrite [*union_cons_of_mem _ xint, *union_cons_of_mem _ yint, *union_cons_of_mem _ xint]; exact !refl) (λ nxint : x ∉ t₁, by rewrite [*union_cons_of_mem _ yint, *union_cons_of_not_mem _ nxint, union_cons_of_mem _ yint]; exact !refl)) (λ nyint : y ∉ t₁, by_cases (λ xint : x ∈ t₁, by rewrite [*union_cons_of_mem _ xint, *union_cons_of_not_mem _ nyint, union_cons_of_mem _ xint]; exact !refl) (λ nxint : x ∉ t₁, by rewrite [*union_cons_of_not_mem _ nxint, *union_cons_of_not_mem _ nyint, union_cons_of_not_mem _ nxint]; exact !swap))) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_union_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (union l t₁) ~ (union l t₂) := list.induction_on l (λ p, by rewrite [*union_nil]; exact p) (λ x xs r p, by_cases (λ xint₁ : x ∈ t₁, assert xint₂ : x ∈ t₂, from mem_perm p xint₁, by rewrite [union_cons_of_mem _ xint₁, union_cons_of_mem _ xint₂]; exact (r p)) (λ nxint₁ : x ∉ t₁, assert nxint₂ : x ∉ t₂, from not_mem_perm p nxint₁, by rewrite [union_cons_of_not_mem _ nxint₁, union_cons_of_not_mem _ nxint₂]; exact (skip _ (r p)))) theorem perm_union {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (union l₁ t₁) ~ (union l₂ t₂) := assume p₁ p₂, trans (perm_union_left t₁ p₁) (perm_union_right l₂ p₂) end perm_union section perm_insert variable [H : decidable_eq A] include H theorem perm_insert (a : A) {l₁ l₂ : list A} : l₁ ~ l₂ → (insert a l₁) ~ (insert a l₂) := assume p, by_cases (λ ainl₁ : a ∈ l₁, assert ainl₂ : a ∈ l₂, from mem_perm p ainl₁, by rewrite [insert_eq_of_mem ainl₁, insert_eq_of_mem ainl₂]; exact p) (λ nainl₁ : a ∉ l₁, assert nainl₂ : a ∉ l₂, from not_mem_perm p nainl₁, by rewrite [insert_eq_of_not_mem nainl₁, insert_eq_of_not_mem nainl₂]; exact (skip _ p)) end perm_insert section perm_intersection variable [H : decidable_eq A] include H theorem perm_intersection_left {l₁ l₂ : list A} (t₁ : list A) : l₁ ~ l₂ → (intersection l₁ t₁) ~ (intersection l₂ t₁) := assume p, perm.induction_on p !refl (λ x l₁ l₂ p₁ r₁, by_cases (λ xint₁ : x ∈ t₁, by rewrite [*intersection_cons_of_mem _ xint₁]; exact (skip x r₁)) (λ nxint₁ : x ∉ t₁, by rewrite [*intersection_cons_of_not_mem _ nxint₁]; exact r₁)) (λ x y l, by_cases (λ yint : y ∈ t₁, by_cases (λ xint : x ∈ t₁, by rewrite [*intersection_cons_of_mem _ xint, *intersection_cons_of_mem _ yint, *intersection_cons_of_mem _ xint]; exact !swap) (λ nxint : x ∉ t₁, by rewrite [*intersection_cons_of_mem _ yint, *intersection_cons_of_not_mem _ nxint, intersection_cons_of_mem _ yint]; exact !refl)) (λ nyint : y ∉ t₁, by_cases (λ xint : x ∈ t₁, by rewrite [*intersection_cons_of_mem _ xint, *intersection_cons_of_not_mem _ nyint, intersection_cons_of_mem _ xint]; exact !refl) (λ nxint : x ∉ t₁, by rewrite [*intersection_cons_of_not_mem _ nxint, *intersection_cons_of_not_mem _ nyint, intersection_cons_of_not_mem _ nxint]; exact !refl))) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_intersection_right (l : list A) {t₁ t₂ : list A} : t₁ ~ t₂ → (intersection l t₁) ~ (intersection l t₂) := list.induction_on l (λ p, by rewrite [*intersection_nil]; exact !refl) (λ x xs r p, by_cases (λ xint₁ : x ∈ t₁, assert xint₂ : x ∈ t₂, from mem_perm p xint₁, by rewrite [intersection_cons_of_mem _ xint₁, intersection_cons_of_mem _ xint₂]; exact (skip _ (r p))) (λ nxint₁ : x ∉ t₁, assert nxint₂ : x ∉ t₂, from not_mem_perm p nxint₁, by rewrite [intersection_cons_of_not_mem _ nxint₁, intersection_cons_of_not_mem _ nxint₂]; exact (r p))) theorem perm_intersection {l₁ l₂ t₁ t₂ : list A} : l₁ ~ l₂ → t₁ ~ t₂ → (intersection l₁ t₁) ~ (intersection l₂ t₂) := assume p₁ p₂, trans (perm_intersection_left t₁ p₁) (perm_intersection_right l₂ p₂) end perm_intersection /- extensionality -/ section ext open eq.ops theorem perm_ext : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → (∀a, a ∈ l₁ ↔ a ∈ l₂) → l₁ ~ l₂ | [] [] d₁ d₂ e := !perm.nil | [] (a₂::t₂) d₁ d₂ e := absurd (iff.mp' (e a₂) !mem_cons) (not_mem_nil a₂) | (a₁::t₁) [] d₁ d₂ e := absurd (iff.mp (e a₁) !mem_cons) (not_mem_nil a₁) | (a₁::t₁) (a₂::t₂) d₁ d₂ e := have a₁inl₂ : a₁ ∈ a₂::t₂, from iff.mp (e a₁) !mem_cons, have dt₁ : nodup t₁, from nodup_of_nodup_cons d₁, have na₁int₁ : a₁ ∉ t₁, from not_mem_of_nodup_cons d₁, have ex : ∃s₁ s₂, a₂::t₂ = s₁++(a₁::s₂), from mem_split a₁inl₂, obtain (s₁ s₂ : list A) (t₂_eq : a₂::t₂ = s₁++(a₁::s₂)), from ex, have dt₂' : nodup (a₁::(s₁++s₂)), from nodup_head (by rewrite [t₂_eq at d₂]; exact d₂), have na₁s₁s₂ : a₁ ∉ s₁++s₂, from not_mem_of_nodup_cons dt₂', have na₁s₁ : a₁ ∉ s₁, from not_mem_of_not_mem_append_left na₁s₁s₂, have na₁s₂ : a₁ ∉ s₂, from not_mem_of_not_mem_append_right na₁s₁s₂, have ds₁s₂ : nodup (s₁++s₂), from nodup_of_nodup_cons dt₂', have eqv : ∀a, a ∈ t₁ ↔ a ∈ s₁++s₂, from take a, iff.intro (λ aint₁ : a ∈ t₁, assert aina₂t₂ : a ∈ a₂::t₂, from iff.mp (e a) (mem_cons_of_mem _ aint₁), have ains₁a₁s₂ : a ∈ s₁++(a₁::s₂), by rewrite [t₂_eq at aina₂t₂]; exact aina₂t₂, or.elim (mem_or_mem_of_mem_append ains₁a₁s₂) (λ ains₁ : a ∈ s₁, mem_append_left s₂ ains₁) (λ aina₁s₂ : a ∈ a₁::s₂, or.elim (eq_or_mem_of_mem_cons aina₁s₂) (λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ aint₁) na₁int₁) (λ ains₂ : a ∈ s₂, mem_append_right s₁ ains₂))) (λ ains₁s₂ : a ∈ s₁ ++ s₂, or.elim (mem_or_mem_of_mem_append ains₁s₂) (λ ains₁ : a ∈ s₁, have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_left _ ains₁), have aina₁t₁ : a ∈ a₁::t₁, from iff.mp' (e a) aina₂t₂, or.elim (eq_or_mem_of_mem_cons aina₁t₁) (λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₁) na₁s₁) (λ aint₁ : a ∈ t₁, aint₁)) (λ ains₂ : a ∈ s₂, have aina₂t₂ : a ∈ a₂::t₂, from by rewrite [t₂_eq]; exact (mem_append_right _ (mem_cons_of_mem _ ains₂)), have aina₁t₁ : a ∈ a₁::t₁, from iff.mp' (e a) aina₂t₂, or.elim (eq_or_mem_of_mem_cons aina₁t₁) (λ aeqa₁ : a = a₁, absurd (aeqa₁ ▸ ains₂) na₁s₂) (λ aint₁ : a ∈ t₁, aint₁))), calc a₁::t₁ ~ a₁::(s₁++s₂) : skip a₁ (perm_ext dt₁ ds₁s₂ eqv) ... ~ s₁++(a₁::s₂) : !perm_middle ... = a₂::t₂ : by rewrite t₂_eq end ext /- cross_product -/ section cross_product theorem perm_cross_product_left {l₁ l₂ : list A} (t₁ : list B) : l₁ ~ l₂ → (cross_product l₁ t₁) ~ (cross_product l₂ t₁) := assume p : l₁ ~ l₂, perm.induction_on p !perm.refl (λ x l₁ l₂ p r, perm_app !perm.refl r) (λ x y l, let m₁ := map (λ b, (x, b)) t₁ in let m₂ := map (λ b, (y, b)) t₁ in let c := cross_product l t₁ in calc m₂ ++ (m₁ ++ c) = (m₂ ++ m₁) ++ c : by rewrite append.assoc ... ~ (m₁ ++ m₂) ++ c : perm_app !perm_app_comm !perm.refl ... = m₁ ++ (m₂ ++ c) : by rewrite append.assoc) (λ l₁ l₂ l₃ p₁ p₂ r₁ r₂, trans r₁ r₂) theorem perm_cross_product_right (l : list A) {t₁ t₂ : list B} : t₁ ~ t₂ → (cross_product l t₁) ~ (cross_product l t₂) := list.induction_on l (λ p, by rewrite [*nil_cross_product]; exact !perm.refl) (λ a t r p, perm_app (perm_map _ p) (r p)) theorem perm_cross_product {l₁ l₂ : list A} {t₁ t₂ : list B} : l₁ ~ l₂ → t₁ ~ t₂ → (cross_product l₁ t₁) ~ (cross_product l₂ t₂) := assume p₁ p₂, trans (perm_cross_product_left t₁ p₁) (perm_cross_product_right l₂ p₂) end cross_product end perm