-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn -- This file contains basic constructions on categories, including common categories import .basic import data.unit data.sigma data.prod data.empty data.bool open eq eq.ops prod namespace category section open unit definition category_one : category unit := mk (λa b, unit) (λ a b c f g, star) (λ a, star) (λ a b c d f g h, !unit.equal) (λ a b f, !unit.equal) (λ a b f, !unit.equal) end namespace opposite section variables {ob : Type} {C : category ob} {a b c : ob} definition opposite (C : category ob) : category ob := mk (λa b, hom b a) (λ a b c f g, g ∘ f) (λ a, id) (λ a b c d f g h, symm !assoc) (λ a b f, !id_right) (λ a b f, !id_left) --definition compose_opposite {C : category ob} {a b c : ob} {g : a => b} {f : b => c} : compose precedence `∘op` : 60 infixr `∘op` := @compose _ (opposite _) _ _ _ theorem compose_op {f : @hom ob C a b} {g : hom b c} : f ∘op g = g ∘ f := rfl theorem op_op {C : category ob} : opposite (opposite C) = C := category.rec (λ hom comp id assoc idl idr, refl (mk _ _ _ _ _ _)) C end definition Opposite (C : Category) : Category := Category.mk (objects C) (opposite (category_instance C)) end opposite section definition type_category : category Type := mk (λa b, a → b) (λ a b c, function.compose) (λ a, function.id) (λ a b c d h g f, symm (function.compose_assoc h g f)) (λ a b f, function.compose_id_left f) (λ a b f, function.compose_id_right f) end section open decidable unit empty variables {A : Type} {H : decidable_eq A} include H definition set_hom (a b : A) := decidable.rec_on (H a b) (λh, unit) (λh, empty) theorem set_hom_subsingleton [instance] (a b : A) : subsingleton (set_hom a b) := _ definition set_compose {a b c : A} (g : set_hom b c) (f : set_hom a b) : set_hom a c := decidable.rec_on (H b c) (λ Hbc g, decidable.rec_on (H a b) (λ Hab f, rec_on_true (trans Hab Hbc) ⋆) (λh f, empty.rec _ f) f) (λh (g : empty), empty.rec _ g) g definition set_category (A : Type) {H : decidable_eq A} : category A := mk (λa b, set_hom a b) (λ a b c g f, set_compose g f) (λ a, rec_on_true rfl ⋆) (λ a b c d h g f, subsingleton.elim _ _ _) (λ a b f, subsingleton.elim _ _ _) (λ a b f, subsingleton.elim _ _ _) end section open bool definition category_two := set_category bool end section cat_of_cat definition category_of_categories : category Category := mk (λ a b, Functor a b) (λ a b c g f, functor.Compose g f) (λ a, functor.Id) (λ a b c d h g f, !functor.Assoc) (λ a b f, !functor.Id_left) (λ a b f, !functor.Id_right) end cat_of_cat namespace product section open prod definition prod_category {obC obD : Type} (C : category obC) (D : category obD) : category (obC × obD) := mk (λa b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b)) (λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) ) (λ a, (id,id)) (λ a b c d h g f, pair_eq !assoc !assoc ) (λ a b f, prod.equal !id_left !id_left ) (λ a b f, prod.equal !id_right !id_right) end end product namespace ops notation `Cat` := category_of_categories notation `type` := type_category notation 1 := category_one postfix `ᵒᵖ`:max := opposite.opposite infixr `×c`:30 := product.prod_category instance [persistent] category_of_categories type_category category_one product.prod_category end ops open ops namespace opposite section open ops functor --set_option pp.implicit true definition opposite_functor {obC obD : Type} {C : category obC} {D : category obD} (F : C ⇒ D) : Cᵒᵖ ⇒ Dᵒᵖ := @functor.mk obC obD (Cᵒᵖ) (Dᵒᵖ) (λ a, F a) (λ a b f, F f) (λ a, !respect_id) (λ a b c g f, !respect_comp) end end opposite namespace product section open ops functor definition prod_functor {obC obC' obD obD' : Type} {C : category obC} {C' : category obC'} {D : category obD} {D' : category obD'} (F : C ⇒ D) (G : C' ⇒ D') : C ×c C' ⇒ D ×c D' := functor.mk (λ a, pair (F (pr1 a)) (G (pr2 a))) (λ a b f, pair (F (pr1 f)) (G (pr2 f))) (λ a, pair_eq !respect_id !respect_id) (λ a b c g f, pair_eq !respect_comp !respect_comp) end end product namespace ops infixr `×f`:30 := product.prod_functor infixr `ᵒᵖᶠ`:max := opposite.opposite_functor end ops section functor_category variables {obC obD : Type} (C : category obC) (D : category obD) definition functor_category : category (functor C D) := mk (λa b, natural_transformation a b) (λ a b c g f, natural_transformation.compose g f) (λ a, natural_transformation.id) (λ a b c d h g f, !natural_transformation.assoc) (λ a b f, !natural_transformation.id_left) (λ a b f, !natural_transformation.id_right) end functor_category section open sigma definition slice_category [reducible] {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom b c) := mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), dpr2 b ∘ g = dpr2 a) (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (show dpr2 c ∘ (dpr1 g ∘ dpr1 f) = dpr2 a, proof calc dpr2 c ∘ (dpr1 g ∘ dpr1 f) = (dpr2 c ∘ dpr1 g) ∘ dpr1 f : !assoc ... = dpr2 b ∘ dpr1 f : {dpr2 g} ... = dpr2 a : {dpr2 f} qed)) (λ a, dpair id !id_right) (λ a b c d h g f, dpair_eq !assoc !proof_irrel) (λ a b f, sigma.equal !id_left !proof_irrel) (λ a b f, sigma.equal !id_right !proof_irrel) -- We use !proof_irrel instead of rfl, to give the unifier an easier time end --remove namespace slice section --remove open sigma category.ops --remove sigma instance [persistent] slice_category variables {ob : Type} (C : category ob) definition forgetful (x : ob) : (slice_category C x) ⇒ C := functor.mk (λ a, dpr1 a) (λ a b f, dpr1 f) (λ a, rfl) (λ a b c g f, rfl) definition composition_functor {x y : ob} (h : x ⟶ y) : slice_category C x ⇒ slice_category C y := functor.mk (λ a, dpair (dpr1 a) (h ∘ dpr2 a)) (λ a b f, dpair (dpr1 f) (calc (h ∘ dpr2 b) ∘ dpr1 f = h ∘ (dpr2 b ∘ dpr1 f) : !assoc⁻¹ ... = h ∘ dpr2 a : {dpr2 f})) (λ a, rfl) (λ a b c g f, dpair_eq rfl !proof_irrel) -- the following definition becomes complicated -- definition slice_functor : C ⇒ category_of_categories := -- functor.mk (λ a, Category.mk _ (slice_category C a)) -- (λ a b f, Functor.mk (composition_functor f)) -- (λ a, congr_arg Functor.mk -- (congr_arg4_dep functor.mk -- (funext (λx, sigma.equal rfl !id_left)) -- sorry -- !proof_irrel -- !proof_irrel)) -- (λ a b c g f, sorry) end end slice section coslice open sigma definition coslice {ob : Type} (C : category ob) (c : ob) : category (Σ(b : ob), hom c b) := mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)), g ∘ dpr2 a = dpr2 b) (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (show (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr2 c, proof calc (dpr1 g ∘ dpr1 f) ∘ dpr2 a = dpr1 g ∘ (dpr1 f ∘ dpr2 a): symm !assoc ... = dpr1 g ∘ dpr2 b : {dpr2 f} ... = dpr2 c : {dpr2 g} qed)) (λ a, dpair id !id_left) (λ a b c d h g f, dpair_eq !assoc !proof_irrel) (λ a b f, sigma.equal !id_left !proof_irrel) (λ a b f, sigma.equal !id_right !proof_irrel) -- theorem slice_coslice_opp {ob : Type} (C : category ob) (c : ob) : -- coslice C c = opposite (slice (opposite C) c) := -- sorry end coslice section arrow open sigma eq.ops -- theorem concat_commutative_squares {ob : Type} {C : category ob} {a1 a2 a3 b1 b2 b3 : ob} -- {f1 : a1 => b1} {f2 : a2 => b2} {f3 : a3 => b3} {g2 : a2 => a3} {g1 : a1 => a2} -- {h2 : b2 => b3} {h1 : b1 => b2} (H1 : f2 ∘ g1 = h1 ∘ f1) (H2 : f3 ∘ g2 = h2 ∘ f2) -- : f3 ∘ (g2 ∘ g1) = (h2 ∘ h1) ∘ f1 := -- calc -- f3 ∘ (g2 ∘ g1) = (f3 ∘ g2) ∘ g1 : assoc -- ... = (h2 ∘ f2) ∘ g1 : {H2} -- ... = h2 ∘ (f2 ∘ g1) : symm assoc -- ... = h2 ∘ (h1 ∘ f1) : {H1} -- ... = (h2 ∘ h1) ∘ f1 : assoc -- definition arrow {ob : Type} (C : category ob) : category (Σ(a b : ob), hom a b) := -- mk (λa b, Σ(g : hom (dpr1 a) (dpr1 b)) (h : hom (dpr2' a) (dpr2' b)), -- dpr3 b ∘ g = h ∘ dpr3 a) -- (λ a b c g f, dpair (dpr1 g ∘ dpr1 f) (dpair (dpr2' g ∘ dpr2' f) (concat_commutative_squares (dpr3 f) (dpr3 g)))) -- (λ a, dpair id (dpair id (id_right ⬝ (symm id_left)))) -- (λ a b c d h g f, dtrip_eq2 assoc assoc !proof_irrel) -- (λ a b f, trip.equal2 id_left id_left !proof_irrel) -- (λ a b f, trip.equal2 id_right id_right !proof_irrel) -- make these definitions private? variables {ob : Type} {C : category ob} protected definition arrow_obs (ob : Type) (C : category ob) := Σ(a b : ob), hom a b variables {a b : arrow_obs ob C} protected definition src (a : arrow_obs ob C) : ob := dpr1 a protected definition dst (a : arrow_obs ob C) : ob := dpr2' a protected definition to_hom (a : arrow_obs ob C) : hom (src a) (dst a) := dpr3 a protected definition arrow_hom (a b : arrow_obs ob C) : Type := Σ (g : hom (src a) (src b)) (h : hom (dst a) (dst b)), to_hom b ∘ g = h ∘ to_hom a protected definition hom_src (m : arrow_hom a b) : hom (src a) (src b) := dpr1 m protected definition hom_dst (m : arrow_hom a b) : hom (dst a) (dst b) := dpr2' m protected definition commute (m : arrow_hom a b) : to_hom b ∘ (hom_src m) = (hom_dst m) ∘ to_hom a := dpr3 m definition arrow (ob : Type) (C : category ob) : category (arrow_obs ob C) := mk (λa b, arrow_hom a b) (λ a b c g f, dpair (hom_src g ∘ hom_src f) (dpair (hom_dst g ∘ hom_dst f) (show to_hom c ∘ (hom_src g ∘ hom_src f) = (hom_dst g ∘ hom_dst f) ∘ to_hom a, proof calc to_hom c ∘ (hom_src g ∘ hom_src f) = (to_hom c ∘ hom_src g) ∘ hom_src f : !assoc ... = (hom_dst g ∘ to_hom b) ∘ hom_src f : {commute g} ... = hom_dst g ∘ (to_hom b ∘ hom_src f) : symm !assoc ... = hom_dst g ∘ (hom_dst f ∘ to_hom a) : {commute f} ... = (hom_dst g ∘ hom_dst f) ∘ to_hom a : !assoc qed) )) (λ a, dpair id (dpair id (!id_right ⬝ (symm !id_left)))) (λ a b c d h g f, dtrip_eq_ndep !assoc !assoc !proof_irrel) (λ a b f, trip.equal_ndep !id_left !id_left !proof_irrel) (λ a b f, trip.equal_ndep !id_right !id_right !proof_irrel) end arrow end category -- definition foo -- : category (sorry) := -- mk (λa b, sorry) -- (λ a b c g f, sorry) -- (λ a, sorry) -- (λ a b c d h g f, sorry) -- (λ a b f, sorry) -- (λ a b f, sorry)