-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jeremy Avigad, Jakob von Raumer -- Ported from Coq HoTT prelude import ..path ..equiv open eq -- Funext -- ------ -- Define function extensionality as a type class inductive funext [class] : Type := mk : (Π (A : Type) (P : A → Type ) (f g : Π x, P x), is_equiv (@apD10 A P f g)) → funext namespace funext universe variables l k variables [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}} include F protected definition ap [instance] (f g : Π x, P x) : is_equiv (@apD10 A P f g) := funext.rec_on F (λ(H : Π A P f g, _), !H) definition path_pi {f g : Π x, P x} : f ∼ g → f = g := is_equiv.inv (@apD10 A P f g) omit F definition path_pi2 [F : funext] {A B : Type} {P : A → B → Type} (f g : Πx y, P x y) : (Πx y, f x y = g x y) → f = g := λ E, path_pi (λx, path_pi (E x)) end funext