import logic data.nat.basic open nat inductive vector (A : Type) : nat → Type := vnil : vector A zero, vcons : Π {n : nat}, A → vector A n → vector A (succ n) namespace vector theorem vcons.inj₁ {A : Type} {n : nat} (a₁ a₂ : A) (v₁ v₂ : vector A n) : vcons a₁ v₁ = vcons a₂ v₂ → a₁ = a₂ := assume h, vector.no_confusion h (λ n h t, h) end vector