/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.binary Authors: Leonardo de Moura, Jeremy Avigad General properties of binary operations. -/ open eq namespace path_binary section variable {A : Type} variables (op₁ : A → A → A) (inv : A → A) (one : A) notation [local] a * b := op₁ a b notation [local] a ⁻¹ := inv a notation [local] 1 := one definition commutative := ∀a b, a*b = b*a definition associative := ∀a b c, (a*b)*c = a*(b*c) definition left_identity := ∀a, 1 * a = a definition right_identity := ∀a, a * 1 = a definition left_inverse := ∀a, a⁻¹ * a = 1 definition right_inverse := ∀a, a * a⁻¹ = 1 definition left_cancelative := ∀a b c, a * b = a * c → b = c definition right_cancelative := ∀a b c, a * b = c * b → a = c definition inv_op_cancel_left := ∀a b, a⁻¹ * (a * b) = b definition op_inv_cancel_left := ∀a b, a * (a⁻¹ * b) = b definition inv_op_cancel_right := ∀a b, a * b⁻¹ * b = a definition op_inv_cancel_right := ∀a b, a * b * b⁻¹ = a variable (op₂ : A → A → A) notation [local] a + b := op₂ a b definition left_distributive := ∀a b c, a * (b + c) = a * b + a * c definition right_distributive := ∀a b c, (a + b) * c = a * c + b * c end context variable {A : Type} variable {f : A → A → A} variable H_comm : commutative f variable H_assoc : associative f infixl `*` := f theorem left_comm : ∀a b c, a*(b*c) = b*(a*c) := take a b c, calc a*(b*c) = (a*b)*c : H_assoc ... = (b*a)*c : H_comm ... = b*(a*c) : H_assoc theorem right_comm : ∀a b c, (a*b)*c = (a*c)*b := take a b c, calc (a*b)*c = a*(b*c) : H_assoc ... = a*(c*b) : H_comm ... = (a*c)*b : H_assoc end context variable {A : Type} variable {f : A → A → A} variable H_assoc : associative f infixl `*` := f theorem assoc4helper (a b c d) : (a*b)*(c*d) = a*((b*c)*d) := calc (a*b)*(c*d) = a*(b*(c*d)) : H_assoc ... = a*((b*c)*d) : H_assoc end end path_binary