-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer import ..precategory.basic ..precategory.morphism ..precategory.iso import hott.equiv hott.trunc open precategory morphism is_equiv path truncation nat sigma sigma.ops -- A category is a precategory extended by a witness, -- that the function assigning to each isomorphism a path, -- is an equivalecnce. structure category [class] (ob : Type) extends (precategory ob) := (iso_of_path_equiv : Π {a b : ob}, is_equiv (@iso_of_path ob (precategory.mk hom _ comp ID assoc id_left id_right) a b)) namespace category variables {ob : Type} {C : category ob} {a b : ob} include C -- Make iso_of_path_equiv a class instance -- TODO: Unsafe class instance? instance [persistent] iso_of_path_equiv definition path_of_iso {a b : ob} : a ≅ b → a ≈ b := iso_of_path⁻¹ definition ob_1_type : is_trunc nat.zero .+1 ob := begin apply is_trunc_succ, intros (a, b), fapply trunc_equiv, exact (@path_of_iso _ _ a b), apply inv_closed, apply is_hset_iso, end end category -- Bundled version of categories inductive Category : Type := mk : Π (ob : Type), category ob → Category