/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include "expr.h" namespace lean { /** \brief Return unit if num_args == 0<\tt>, args[0] if num_args == 1<\tt>, and (op args[0] (op args[1] (op ... )))<\tt> */ expr mk_bin_op(expr const & op, expr const & unit, unsigned num_args, expr const * args); expr mk_bin_op(expr const & op, expr const & unit, std::initializer_list const & l); /** \brief Return (Type m) m >= bottom + Offset */ expr mk_type_m(); #define TypeM mk_type_m() /** \brief Return (Type u) u >= m + Offset */ expr mk_type_u(); #define TypeU mk_type_u() /** \brief Return the Lean Boolean type. */ expr mk_bool_type(); #define Bool mk_bool_type() /** \brief Return true iff \c e is the Lean Boolean type. */ bool is_bool_type(expr const & e); /** \brief Create a Lean Boolean value (true/false) */ expr mk_bool_value(bool v); #define True mk_bool_value(true) #define False mk_bool_value(false) /** \brief Return true iff \c e is a Lean Boolean value. */ bool is_bool_value(expr const & e); /** \brief Convert a Lean Boolean value into a C++ Boolean value. \pre is_bool_value(e) */ bool to_bool(expr const & e); /** \brief Return true iff \c e is the Lean true value. */ bool is_true(expr const & e); /** \brief Return true iff \c e is the Lean false value. */ bool is_false(expr const & e); /** \brief Return the Lean If-Then-Else operator. It has type: pi (A : Type), bool -> A -> A -> A */ expr mk_if_fn(); /** \brief Return true iff \c e is the Lean If-Then-Else operator */ bool is_if_fn(expr const & e); /** \brief Return the term (if A c t e) */ inline expr mk_if(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_app(mk_if_fn(), A, c, t, e); } inline expr If(expr const & A, expr const & c, expr const & t, expr const & e) { return mk_if(A, c, t, e); } /** \brief Return the term (if bool c t e) */ inline expr mk_bool_if(expr const & c, expr const & t, expr const & e) { return mk_if(mk_bool_type(), c, t, e); } inline expr bIf(expr const & c, expr const & t, expr const & e) { return mk_bool_if(c, t, e); } expr mk_implies_fn(); bool is_implies_fn(expr const & e); inline expr mk_implies(expr const & e1, expr const & e2) { return mk_app(mk_implies_fn(), e1, e2); } inline expr Implies(expr const & e1, expr const & e2) { return mk_implies(e1, e2); } /** \brief Return the Lean and operator */ expr mk_and_fn(); /** \brief Return true iff \c e is the Lean and operator. */ bool is_and_fn(expr const & e); /** \brief Return (and e1 e2) */ inline expr mk_and(expr const & e1, expr const & e2) { return mk_app(mk_and_fn(), e1, e2); } inline expr mk_and(unsigned num_args, expr const * args) { return mk_bin_op(mk_and_fn(), True, num_args, args); } inline expr And(expr const & e1, expr const & e2) { return mk_and(e1, e2); } inline expr And(std::initializer_list const & l) { return mk_and(l.size(), l.begin()); } /** \brief Return the Lean or operator */ expr mk_or_fn(); bool is_or_fn(expr const & e); /** \brief Return (or e1 e2) */ inline expr mk_or(expr const & e1, expr const & e2) { return mk_app(mk_or_fn(), e1, e2); } inline expr mk_or(unsigned num_args, expr const * args) { return mk_bin_op(mk_or_fn(), False, num_args, args); } inline expr Or(expr const & e1, expr const & e2) { return mk_or(e1, e2); } inline expr Or(std::initializer_list const & l) { return mk_or(l.size(), l.begin()); } /** \brief Return the Lean not operator */ expr mk_not_fn(); bool is_not_fn(expr const & e); /** \brief Return (not e) */ inline expr mk_not(expr const & e) { return mk_app(mk_not_fn(), e); } inline expr Not(expr const & e) { return mk_not(e); } /** \brief Return the Lean forall operator. It has type: Pi (A : Type), (A -> bool) -> Bool<\tt> */ expr mk_forall_fn(); /** \brief Return true iff \c e is the Lean forall operator */ bool is_forall_fn(expr const & e); /** \brief Return the term (forall A P), where A is a type and P : A -> bool */ inline expr mk_forall(expr const & A, expr const & P) { return mk_app(mk_forall_fn(), A, P); } inline expr Forall(expr const & A, expr const & P) { return mk_forall(A, P); } /** \brief Return the Lean exists operator. It has type: Pi (A : Type), (A -> Bool) -> Bool<\tt> */ expr mk_exists_fn(); /** \brief Return true iff \c e is the Lean exists operator */ bool is_exists_fn(expr const & e); /** \brief Return the term (exists A P), where A is a type and P : A -> bool */ inline expr mk_exists(expr const & A, expr const & P) { return mk_app(mk_exists_fn(), A, P); } inline expr Exists(expr const & A, expr const & P) { return mk_exists(A, P); } expr mk_mp_fn(); bool is_mp_fn(const expr & e); /** \brief (Axiom) a : Bool, b : Bool, H1 : a => b, H2 : a |- MP(a, b, H1, H2) : b */ inline expr MP(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_mp_fn(), a, b, H1, H2); } expr mk_discharge_fn(); bool is_discharge_fn(const expr & e); /** \brief (Axiom) a : Bool, b : Bool, H : a -> b |- Discharge(a, b, H) : a => b */ inline expr Discharge(expr const & a, expr const & b, expr const & H) { return mk_app(mk_discharge_fn(), a, b, H); } expr mk_refl_fn(); bool is_refl_fn(expr const & e); /** \brief (Axiom) A : Type u, a : A |- Refl(A, a) : a = a */ inline expr Refl(expr const & A, expr const & a) { return mk_app(mk_refl_fn(), A, a); } #define Trivial Refl(Bool, True) expr mk_subst_fn(); bool is_subst_fn(expr const & e); /** \brief (Axiom) A : Type u, P : A -> Bool, a b : A, H1 : P a, H2 : a = b |- Subst(A, P, a, b, H1, H2) : P b */ inline expr Subst(expr const & A, expr const & P, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_subst_fn(), A, P, a, b, H1, H2}); } expr mk_eta_fn(); bool is_eta_fn(expr const & e); /** \brief (Axiom) A : Type u, B : A -> Type u, f : (Pi x : A, B x) |- Eta(A, B, f) : ((Fun x : A => f x) = f) */ inline expr Eta(expr const & A, expr const & B, expr const & f) { return mk_app(mk_eta_fn(), A, B, f); } expr mk_absurd_fn(); bool is_absurd_fn(expr const & e); /** \brief (Theorem) a : Bool, H1 : a, H2 : Not(a) |- Absurd(a, H1, H2) : False */ inline expr Absurd(expr const & a, expr const & H1, expr const & H2) { return mk_app(mk_absurd_fn(), a, H1, H2); } expr mk_false_elim_fn(); bool is_false_elim_fn(expr const & e); /** \brief (Theorem) a : Bool, H : False |- FalseElim(a, H) : a */ inline expr FalseElim(expr const & a, expr const & H) { return mk_app(mk_false_elim_fn(), a, H); } expr mk_symm_fn(); bool is_symm_fn(expr const & e); /** \brief (Theorem) A : Type u, a b : A, H : a = b |- Symm(A, a, b, H) : b = a */ inline expr Symm(expr const & A, expr const & a, expr const & b, expr const & H) { return mk_app(mk_symm_fn(), A, a, b, H); } expr mk_trans_fn(); bool is_trans_fn(expr const & e); /** \brief (Theorem) A : Type u, a b c : A, H1 : a = b, H2 : b = c |- Trans(A, a, b, c, H1, H2) : a = c */ inline expr Trans(expr const & A, expr const & a, expr const & b, expr const & c, expr const & H1, expr const & H2) { return mk_app({mk_trans_fn(), A, a, b, c, H1, H2}); } expr mk_xtrans_fn(); bool is_xtrans_fn(expr const & e); /** \brief (Theorem) A : Type u, B : Type u, a : A, b c : B, H1 : a = b, H2 : b = c |- xTrans(A, B, a, b, c, H1, H2) : a = c */ inline expr xTrans(expr const & A, expr const & B, expr const & a, expr const & b, expr const & c, expr const & H1, expr const & H2) { return mk_app({mk_xtrans_fn(), A, B, a, b, c, H1, H2}); } expr mk_congr1_fn(); bool is_congr1_fn(expr const & e); /** \brief (Theorem) A : Type u, B : A -> Type u, f g : (Pi x : A, B x), a : A, H : f = g |- Congr2(A, B, f, g, a, H) : f a = g a */ inline expr Congr1(expr const & A, expr const & B, expr const & f, expr const & g, expr const & a, expr const & H) { return mk_app({mk_congr1_fn(), A, B, f, g, a, H}); } expr mk_congr2_fn(); bool is_congr2_fn(expr const & e); /** \brief (Theorem) A : Type u, B : A -> Type u, f : (Pi x : A, B x), a b : A, H : a = b |- Congr1(A, B, f, a, b, H) : f a = f b */ inline expr Congr2(expr const & A, expr const & B, expr const & f, expr const & a, expr const & b, expr const & H) { return mk_app({mk_congr2_fn(), A, B, f, a, b, H}); } expr mk_congr_fn(); bool is_congr_fn(expr const & e); /** \brief (Theorem) A : Type u, B : A -> Type u, f g : (Pi x : A, B x), a b : A, H1 : f = g, H2 : a = b |- Congr(A, B, f, g, a, b, H1, H2) : f a = g b */ inline expr Congr(expr const & A, expr const & B, expr const & f, expr const & g, expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app({mk_congr_fn(), A, B, f, g, a, b, H1, H2}); } expr mk_eq_mp_fn(); bool is_eq_mp_fn(expr const & e); /** \brief (Theorem) a : Bool, b : Bool, H1 : a = b, H2 : a |- EqMP(a, b, H1, H2) : b */ inline expr EqMP(expr const & a, expr const & b, expr const & H1, expr const & H2) { return mk_app(mk_eq_mp_fn(), a, b, H1, H2); } expr mk_truth(); bool is_truth(expr const & e); /** \brief (Theorem) Truth : True */ #define Truth mk_truth() expr mk_eqt_elim_fn(); bool is_eqt_elim(expr const & e); // \brief (Theorem) a : Bool, H : a = True |- EqT(a, H) : a inline expr EqTElim(expr const & a, expr const & H) { return mk_app(mk_eqt_elim_fn(), a, H); } expr mk_forall_elim_fn(); bool is_forall_elim_fn(expr const & e); // \brief (Theorem) A : Type u, P : A -> Bool, H : (Forall A P), a : A |- Forallelim(A, P, H, a) : P a inline expr ForallElim(expr const & A, expr const & P, expr const & H, expr const & a) { return mk_app(mk_forall_elim_fn(), A, P, H, a); } expr mk_ext_fn(); bool is_ext_fn(expr const & e); expr mk_foralli_fn(); bool is_foralli_fn(expr const & e); expr mk_domain_inj_fn(); bool is_domain_inj_fn(expr const & e); expr mk_range_inj_fn(); bool is_range_inj_fn(expr const & e); class environment; /** \brief Initialize the environment with basic builtin declarations and axioms */ void add_basic_theory(environment & env); /** \brief Helper macro for defining constants such as bool_type, int_type, int_add, etc. */ #define MK_BUILTIN(Name, ClassName) \ expr mk_##Name() { \ static thread_local expr r = mk_value(*(new ClassName())); \ return r; \ } \ bool is_##Name(expr const & e) { \ return is_value(e) && to_value(e).kind() == ClassName::g_kind; \ } /** \brief Helper macro for generating "defined" constants. */ #define MK_CONSTANT(Name, NameObj) \ static name Name ## _name = NameObj; \ expr mk_##Name() { \ static thread_local expr r = mk_constant(Name ## _name); \ return r ; \ } \ bool is_##Name(expr const & e) { \ return is_constant(e) && const_name(e) == Name ## _name; \ } }